ﻻ يوجد ملخص باللغة العربية
In this paper, the impact of in-band full-duplex (IBFD) wireless communications on secret key generation via physical layer channel state information is investigated. A key generation strategy for IBFD wireless devices to increase the rate of generated secret keys over multipath fading channels is proposed. Conventionally, due to the half-duplex (HD) constraint on wireless transmissions, sensing simultaneous reciprocal channel measurements is not possible, which leads to a degraded key generation rate. However, with the advent of IBFD wireless devices, the legitimate nodes can sense the shared wireless link simultaneously at the possible cost of a self-interference (SI) channel estimation and some residual self-interference (RSI). As we demonstrate, with HD correlated observations the key rate is upper bounded by a constant, while with IBFD the key rate is only limited by the SI cancellation performance and is in general greater than that of its HD counterpart. Our analysis shows that with reasonable levels of SI cancellation, in the high SNR regime the key rate of IBFD is much higher, while in low SNRs, the HD system performs better. Finally, the key rate loss due to the overhead imposed by the SI channel estimation phase is discussed.
Full-duplex (FD) communication is regarded as a key technology in future 5G and Internet of Things (IoT) systems. In addition to high data rate constraints, the success of these systems depends on the ability to allow for confidentiality and security
Recently, several working implementations of in--band full--duplex wireless systems have been presented, where the same node can transmit and receive simultaneously in the same frequency band. The introduction of such a possibility at the physical la
In this letter, we analyze the achievable rate of ultra-reliable low-latency communications (URLLC) in a randomly modeled wireless network. We use two mathematical tools to properly characterize the considered system: i) stochastic geometry to model
This paper has been withdrawn by the author due to some errors.
We consider a broadcast channel, in which a multi-antenna transmitter (Alice) sends $K$ confidential information signals to $K$ legitimate users (Bobs) in the presence of $L$ eavesdroppers (Eves). Alice uses MIMO precoding to generate the information