ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting Full-duplex Receivers for Achieving Secret Communications in Multiuser MISO Networks

102   0   0.0 ( 0 )
 نشر من قبل Berk Akgun
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a broadcast channel, in which a multi-antenna transmitter (Alice) sends $K$ confidential information signals to $K$ legitimate users (Bobs) in the presence of $L$ eavesdroppers (Eves). Alice uses MIMO precoding to generate the information signals along with her own (Tx-based) friendly jamming. Interference at each Bob is removed by MIMO zero-forcing. This, however, leaves a vulnerability region around each Bob, which can be exploited by a nearby Eve. We address this problem by augmenting Tx-based friendly jamming (TxFJ) with Rx-based friendly jamming (RxFJ), generated by each Bob. Specifically, each Bob uses self-interference suppression (SIS) to transmit a friendly jamming signal while simultaneously receiving an information signal over the same channel. We minimize the powers allocated to the information, TxFJ, and RxFJ signals under given guarantees on the individual secrecy rate for each Bob. The problem is solved for the cases when the eavesdroppers channel state information is known/unknown. Simulations show the effectiveness of the proposed solution. Furthermore, we discuss how to schedule transmissions when the rate requirements need to be satisfied on average rather than instantaneously. Under special cases, a scheduling algorithm that serves only the strongest receivers is shown to outperform the one that schedules all receivers.



قيم البحث

اقرأ أيضاً

Full-duplex (FD) communication is regarded as a key technology in future 5G and Internet of Things (IoT) systems. In addition to high data rate constraints, the success of these systems depends on the ability to allow for confidentiality and security . Secret-key agreement from reciprocal wireless channels can be regarded as a valuable supplement for security at the physical layer. In this work, we study the role of FD communication in conjunction with secret-key agreement. We first introduce two complementary key generation models for FD and half-duplex (HD) settings and compare the performance by introducing the key-reconciliation function. Furthermore, we study the impact of the so called probing-reconciliation trade-off, the role of a strong eavesdropper and analyze the system in the high SNR regime. We show that under certain conditions, the FD mode enforces a deteriorating impact on the capabilities of the eavesdropper and offers several advantages in terms of secret-key rate over the conventional HD setups. Our analysis reveals as an interesting insight that perfect self-interference cancellation is not necessary in order to obtain performance gains over the HD mode.
This paper studies the potential of harvesting energy from the self-interference of a full-duplex base station. The base station is equipped with a self-interference cancellation switch, which is turned-off for a fraction of the transmission period f or harvesting the energy from the self-interference that arises due to the downlink transmission. For the remaining transmission period, the switch is on such that the uplink transmission takes place simultaneously with the downlink transmission. A novel energy-efficiency maximization problem is formulated for the joint design of downlink beamformers, uplink power allocations and transmission time-splitting factor. The optimization problem is nonconvex, and hence, a rapidly converging iterative algorithm is proposed by employing the successive convex approximation approach. Numerical simulation results show significant improvement in the energy-efficiency by allowing self-energy recycling.
In this paper, the impact of in-band full-duplex (IBFD) wireless communications on secret key generation via physical layer channel state information is investigated. A key generation strategy for IBFD wireless devices to increase the rate of generat ed secret keys over multipath fading channels is proposed. Conventionally, due to the half-duplex (HD) constraint on wireless transmissions, sensing simultaneous reciprocal channel measurements is not possible, which leads to a degraded key generation rate. However, with the advent of IBFD wireless devices, the legitimate nodes can sense the shared wireless link simultaneously at the possible cost of a self-interference (SI) channel estimation and some residual self-interference (RSI). As we demonstrate, with HD correlated observations the key rate is upper bounded by a constant, while with IBFD the key rate is only limited by the SI cancellation performance and is in general greater than that of its HD counterpart. Our analysis shows that with reasonable levels of SI cancellation, in the high SNR regime the key rate of IBFD is much higher, while in low SNRs, the HD system performs better. Finally, the key rate loss due to the overhead imposed by the SI channel estimation phase is discussed.
97 - Binyu Lu , Rui Wang , Yiming Liu 2021
In this letter, we study the outage probability of intelligent reflecting surface (IRS) assisted full duplex two-way communication systems, which characterizes the performance of overcoming the transmitted data loss caused by long deep fades. To this end, we first derive the probability distribution of the cascaded end-to-end equivalent channel with an arbitrarily given IRS beamformer. Our analysis shows that deriving such probability distribution in the considered case is more challenging than the case with the phase-matched IRS beamformer. Then, with the derived probability distribution of the equivalent channel, we obtain the closed-form expression of the outage probability performance. It theoretically shows that the reflecting element number has a conspicuous effect on the improvement of the system reliability. Extensive numerical results verify the correctness of the derived results and confirm the superiority of the considered IRS assisted two-way communication system comparing to the one-way counterpart.
To increase the spectral efficiency of wireless networks without requiring full-duplex capability of user devices, a potential solution is the recently proposed three-node full-duplex mode. To realize this potential, networks employing three-node ful l-duplex transmissions must deal with self-interference and user-to-user interference, which can be managed by frequency channel and power allocation techniques. Whereas previous works investigated either spectral efficient or fair mechanisms, a scheme that balances these two metrics among users is investigated in this paper. This balancing scheme is based on a new solution method of the multi-objective optimization problem to maximize the weighted sum of the per-user spectral efficiency and the minimum spectral efficiency among users. The mixed integer non-linear nature of this problem is dealt by Lagrangian duality. Based on the proposed solution approach, a low-complexity centralized algorithm is developed, which relies on large scale fading measurements that can be advantageously implemented at the base station. Numerical results indicate that the proposed algorithm increases the spectral efficiency and fairness among users without the need of weighting the spectral efficiency. An important conclusion is that managing user-to-user interference by resource assignment and power control is crucial for ensuring spectral efficient and fair operation of full-duplex networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا