ترغب بنشر مسار تعليمي؟ اضغط هنا

Competing effects of Mn and Y doping on the low-energy excitations and phase diagram of La$_{1-y}$Y$_{y}$Fe$_{1-x}$Mn$_x$AsO$_{0.89}$F$_{0.11}$ iron-based superconductors

63   0   0.0 ( 0 )
 نشر من قبل Matteo Moroni
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon Spin Rotation ($mu$SR) and $^{19}$F Nuclear Magnetic Resonance (NMR) measurements were performed to investigate the effect of Mn for Fe substitutions in La$_{1-y}$Y$_{y}$Fe$_{1-x}$Mn$_x$AsO$_{0.89}$F$_{0.11}$ superconductors. While for $y = 0$ a very low critical concentration of Mn ($x = 0.2$%) is needed to quench superconductivity, as $y$ increases the negative chemical pressure introduced by Y for La substitution stabilizes superconductivity and for $y= 20$% it is suppressed at Mn contents an order of magnitude larger. A magnetic phase arises once superconductivity is suppressed both for $y$=0 and for $y= 20$%. Low-energy spin fluctuations give rise to a peak in $^{19}$F NMR $1/T_1$ with an onset well above the superconducting transition temperature and whose magnitude increases with $x$. Also the static magnetic correlations probed by $^{19}$F NMR linewidth measurements show a marked increase with Mn content. The disruption of superconductivity and the onset of the magnetic ground-state are discussed in the light of the proximity of LaFeAsO$_{0.89}$F$_{0.11}$ to a quantum critical point.



قيم البحث

اقرأ أيضاً

P/As-substitution effects on the transport properties of polycrystalline LaFeP$_{1-x}$As$_{x}$O$_{1-y}$F$_{y}$ with $x$ = 0 -- 1.0 and $y$ = 0 -- 0.1 have been studied. In the F-free samples ($y$ = 0), a new superconducting (SC) dome with a maximum $ T_{c}$ of 12 K is observed around $x$ = 0 -- 0.3. This is separated from another SC dome with $T_{c}$ $sim$10 K at $x$ = 0.6 -- 0.8 by an antiferromagnetic region ($x$ = 0.3 -- 0.6), giving a two-dome feature in the $T_{c}-x$ phase diagram. As $y$ increases, the two SC domes merge together, changing to a double peak structure at $y$ = 0.05 and a single dome at $y$ = 0.1. This proves the presence of two different Fermi surface states in this system.
122 - F. Hammerath , P. Bonfa , S. Sanna 2014
A superconducting-to-magnetic transition is reported for LaFe$_{1-x}$Mn$_x$AsO$_{0.89}$F$_{0.11}$ where a per thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (muSR) and nuclear quadru pole resonance (NQR) on compounds with Mn contents ranging from x=0.025% to x=0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, a small amount of Mn as low as 0.2% suppresses superconductivity completely. Static magnetism, involving the FeAs planes, is observed to arise for x > 0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate 1/T1, is observed upon Mn substitution. The analysis of 1/T1 for the sample closest to the the crossover between superconductivity and magnetism (x = 0.2%) points towards the presence of an antiferromagnetic quantum critical point around that doping level.
The appearance of static magnetism, nanoscopically coexisting with superconductivity, is shown to be a general feature of optimally electron-doped LnFe(1-x)Ru(x)AsO(1-y)F(y) superconductor (Ln - lanthanide ion) upon isovalent substitution of Fe by Ru . The magnetic ordering temperature T_N and the magnitude of the internal field display a dome-like dependence on x, peaked around x=1/4, with higher T_N values for those materials characterized by a larger z cell coordinate of As. Remarkably, the latter are also those with the highest superconducting transition temperature (T_c) for x=0. The reduction of T_c(x) is found to be significant in the x region of the phase diagram where the static magnetism develops. Upon increasing the Ru content superconductivity eventually disappears, but only at x=0.6.
The (Li$_{1-x}$Fe$_{x}$OH)FeSe superconductor has been suspected to exhibit long-range magnetic ordering due to Fe substitution in the LiOH layer. However, no direct observation such as magnetic reflection from neutron diffraction has be reported. He re, we use a chemical design strategy to manipulate the doping level of transition metals in the LiOH layer to tune the magnetic properties of the (Li$_{1-x-y}$Fe$_{x}$Mn$_{y}$OD)FeSe system. We find Mn doping exclusively replaces Li in the hydroxide layer resulting in enhanced magnetization in the (Li$_{0.876}$Fe$_{0.062}$Mn$_{0.062}$OD)FeSe superconductor without significantly altering the superconducting behavior as resolved by magnetic susceptibility and electrical/thermal transport measurements. As a result, long-range magnetic ordering was observed below 12 K with neutron diffraction measurements. This work has implications for the design of magnetic superconductors for the fundamental understanding of superconductivity and magnetism in the iron chalcogenide system as well as exploitation as functional materials for next generation devices.
Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear ($pi$, 0) in the parent compound FeTe dif ferent from the collinear AFM order ($pi$, $pi$) in most iron pnictides. Study of the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_x$ is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe$_{1+y}$Te$_{1-x}$Se$_x$, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature ($x$-$T$) phase diagrams for Fe$_{1+y}$Te$_{1-x}$Se$_x$ (0 $leq$ $x$ $leq$ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for $x$ $<$ 0.05, and bulk SC emerges from $x$ = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_x$ is found to be similar to the case of the 1111 system such as LaFeAsO$_{1-x}$F$_x$, and is different from that of the 122 system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا