ﻻ يوجد ملخص باللغة العربية
A superconducting-to-magnetic transition is reported for LaFe$_{1-x}$Mn$_x$AsO$_{0.89}$F$_{0.11}$ where a per thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (muSR) and nuclear quadrupole resonance (NQR) on compounds with Mn contents ranging from x=0.025% to x=0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, a small amount of Mn as low as 0.2% suppresses superconductivity completely. Static magnetism, involving the FeAs planes, is observed to arise for x > 0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate 1/T1, is observed upon Mn substitution. The analysis of 1/T1 for the sample closest to the the crossover between superconductivity and magnetism (x = 0.2%) points towards the presence of an antiferromagnetic quantum critical point around that doping level.
Muon Spin Rotation ($mu$SR) and $^{19}$F Nuclear Magnetic Resonance (NMR) measurements were performed to investigate the effect of Mn for Fe substitutions in La$_{1-y}$Y$_{y}$Fe$_{1-x}$Mn$_x$AsO$_{0.89}$F$_{0.11}$ superconductors. While for $y = 0$ a
The magnetic fluctuations associated with a quantum critical point (QCP) are widely believed to cause the non-Fermi liquid behaviors and unconventional superconductivities, for example, in heavy fermion systems and high temperature cuprate supercondu
In this work we revisit the phase diagram of Co-doped LaFeAsO using single crystals and thermodynamic methods. From magnetic susceptibility studies we track the doping evolution of the antiferromagnetic phase, revealing a continuous suppression of $T
The identification of electronic nematicity across series of iron-based superconductors raises the question of its relationship with superconductivity and other ordered states. Here, we report a systematic elastoresistivity study on LaFe$_{1-x}$Co$_x
75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of