ترغب بنشر مسار تعليمي؟ اضغط هنا

The slowly pulsating B-star 18 Peg: A testbed for upper main sequence stellar evolution

248   0   0.0 ( 0 )
 نشر من قبل Andreas Irrgang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The predicted width of the upper main sequence in stellar evolution models depends on the empirical calibration of the convective overshooting parameter. Despite decades of discussions, its precise value is still unknown and further observational constraints are required to gauge it. Based on a photometric and preliminary asteroseismic analysis, we show that the mid B-type giant 18 Peg is one of the most evolved members of the rare class of slowly pulsating B-stars and, thus, bears tremendous potential to derive a tight lower limit for the width of the upper main sequence. In addition, 18 Peg turns out to be part of a single-lined spectroscopic binary system with an eccentric orbit that is greater than 6 years. Further spectroscopic and photometric monitoring and a sophisticated asteroseismic investigation are required to exploit the full potential of this star as a benchmark object for stellar evolution theory.


قيم البحث

اقرأ أيضاً

We present results of a search for identification of modes responsible for the six most significant frequency peaks detected in the rapidly rotating SPB star $mu$ Eridani. All published and some unpublished photometric data are used in our new analys is. The mode identification is carried out with the method developed by Daszynska-Daszkiewicz et al. employing the phases and amplitudes from multi-band photometric data and relying on the traditional approximation for the treatment of oscillations in rotating stars. Models consistent with the observed mean parameters are considered. For the five frequency peaks, the candidates for the identifications are searched amongst unstable modes. In the case of the third frequency, which is an exact multiple of the orbital frequency, this condition is relaxed. The systematic search is continued up to a harmonic degree $ell =6$. Determination of the angular numbers, $(ell,m)$, is done simultaneously with the rotation rate, $V_{rm rot}$, and the inclination angle, $i$, constrained by the spectroscopic data on the projected rotational velocity, $V_{rm rot}sin i$, which is assumed constant. All the peaks may be accounted for with g-modes of high radial orders and the degrees $ellle 6$. There are differences in some identifications between the models. For the two lowest--amplitude peaks the identifications are not unique. Nonetheless, the equatorial velocity is constrained to a narrow range of (135, 140) km/s. Our work presents the first application of the photometric method of mode identification in the framework of the traditional approximation and we believe that it opens a new promising direction in studies of SPB stars.
The impact of stellar rotation on the morphology of star cluster colour-magnitude diagrams is widely acknowledged. However, the physics driving the distribution of the equatorial rotation velocities of main-sequence turn-off (MSTO) stars is as yet po orly understood. Using Gaia Data Release 2 photometry and new Southern African Large Telescope medium-resolution spectroscopy, we analyse the intermediate-age ($sim1,$Gyr-old) Galactic open clusters NGC 3960, NGC 6134 and IC 4756 and develop a novel method to derive their stellar rotation distributions based on SYCLIST stellar rotation models. Combined with literature data for the open clusters NGC 5822 and NGC 2818, we find a tight correlation between the number ratio of slow rotators and the clusters binary fractions. The blue-main-sequence stars in at least two of our clusters are more centrally concentrated than their red-main-sequence counterparts. The origin of the equatorial stellar rotation distribution and its evolution remains as yet unidentified. However, the observed correlation in our open cluster sample suggests a binary-driven formation mechanism.
128 - Guillermo Torres 2013
We report the discovery that the pre-main sequence object LkCa3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (~0.5 arc sec) visual pair, with one component being a moder ately eccentric 12.94-day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented with new near-infrared spectroscopy shows both visual components to be double-lined, the second one having a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and near-infrared flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we detect also the rotational signal of the primary in the 4.06-day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa3 and of the well-known quadruple pre-main sequence system GG Tau with the widely used models from the Lyon series for a mixing length parameter of alpha_ML = 1.0 strongly favor the Dartmouth models.
We assess the systematic uncertainties in stellar evolutionary calculations for low- to intermediate-mass, main-sequence stars. We compare published stellar tracks from several different evolution codes with our own tracks computed using the stellar codes STARS and MESA. In particular, we focus on tracks of 1 and 3 solar masses at solar metallicity. We find that the spread in the available 1 solar mass tracks (computed before the recent solar composition revision by Asplund et al.) can be covered by tracks between 0.97-1.01 solar masses computed with the STARS code. We assess some possible causes of the origin of this uncertainty, including how the choice of input physics and the solar constraints used to perform the solar calibration affect the tracks. We find that for a 1 solar mass track, uncertainties of around 10% in the initial hydrogen abundance and initial metallicity produce around a 2% error in mass. For the 3 solar mass tracks, there is very little difference between the tracks from the various different stellar codes. The main difference comes in the extent of the main sequence, which we believe results from the different choices of the implementation of convective overshooting in the core. Uncertainties in the initial abundances lead to a 1-2% error in the mass determination. These uncertainties cover only part of the total error budget, which should also include uncertainties in the input physics (e.g., reaction rates, opacities, convective models) and any missing physics (e.g., radiative levitation, rotation, magnetic fields). Uncertainties in stellar surface properties such as luminosity and effective temperature will further reduce the accuracy of any potential mass determinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا