ترغب بنشر مسار تعليمي؟ اضغط هنا

High-field electron transport in bulk ZnO

77   0   0.0 ( 0 )
 نشر من قبل Linas Ardaravi\\v{c}ius
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current-voltage dependence is measured in (Ga,Sb)-doped ZnO up to 150 kV/cm electric fields. A channel temperature is controlled by applying relatively short (few ns) voltage pulses to two-terminal samples. The dependence of electron drift velocity on electron density ranging from 1.42$times$10$^{17}$ cm$^{-3}$ to 1.3$times$10$^{20}$ cm$^{-3}$ at a given electric field is deduced after estimation of the sample contact resistance and the Hall electron mobility. Manifestation of the highest electron drift velocity up to $sim$1.5$times$10$^{7}$ cm/s is estimated for electron density of 1.42$times$10$^{17}$ cm$^{-3}$ and is in agreement with Monte Carlo simulation when hot-phonon lifetime is below 1 ps. A local drift velocity maximum is observed at $sim$1.1$times$10$^{19}$ cm$^{-3}$ and is in agreement with ultra-fast hot phonon decay.



قيم البحث

اقرأ أيضاً

In this paper, the reported experimental data in [Sci. Rep., 2012, 2, 533] related to electrical transport properties in bulk ZnO, ZnMgO/ZnO, and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitatively and the most important s cattering parameters for controlling electron concentration and electron mobility were obtained. Treatment of intrinsic mechanisms included polar-optical phonon scattering, piezoelectric scattering and acoustic deformation potential scattering. For extrinsic mechanisms, ionized impurity, dislocation scattering, and strain-induced fields were included. For bulk ZnO, the reported experimental data were corrected for removing the effects of a degenerate layer at the ZnO/sapphire interface via a two layer Hall effect model. Also, donor density, acceptor density and donor activation energy were determined via the charge balance equation. This sample exhibited hopping conduction below 50K and dislocation scattering closely controlled electron mobility closely. The obtained results indicated that the enhancement of electron mobility in double sample, compared with the single one, can be attributed to the reduction of dislocation density, two dimensional impurity density in the potential well due to background impurities, and/or interface charge and strain-induced fields, which can be related to better electron confinement in the channel and enhancement in the sheet carrier concentration of 2DEG in this sample.
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized via standard solid-state reaction route. Reference paramagnetic Co-doped ZnO samples with low level of structural defects are subjected to heat treatments in a reductive atmosphere in order to introduce defects in the samples in a controlled way. A detailed structural analysis is carried out in order to characterize the induced defects and their concentration. The magnetometry revealed the coexistence of a paramagnetic and a ferromagnetic phase at room temperature in straight correlation with the structural properties. The saturation magnetization is found to increase with the intensification of the heat treatment, and, therefore, with the increase of the density of induced defects. The magnetic behavior is fully explained in terms of the bound magnetic polaron model. Based on the experimental findings, supported by theoretical calculations, we attribute the origin of the observed defect-induced-ferromagnetism to the ferromagnetic coupling between the Co ions mediated by magnetic polarons due to zinc interstitial defects.
In this work, high field carrier transport in two dimensional (2D) graphene is investigated. Analytical models are applied to estimate the saturation currents in graphene, based on the high scattering rate of optical phonon emission. Non-equilibrium (hot) phonon effect was studied by Monte Carlo (MC) simulations. MC simulation confirms that hot phonon effects play a dominant role in current saturation in graphene. Current degradation due to elastic scattering events is much smaller compared to the hot phonon effect. Transient phenomenon as such as velocity overshoot was also studied using MC simulation. The simulation results shows promising potential for graphene to be used in high speed electronic devices by shrinking the channel length below 100nm if electrostatic control can be exercised in the absence of a band gap.
154 - T. C. Rodel , J. Dai , F. Fortuna 2018
We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultra-high vacuum, and characterize its electronic structure using angle-resolved photoemission spectroscopy. The aluminum oxidizes into a lumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two $s$-type subbands, that we compare to the $d$-like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a 2D Fermi liquid with a Debye distribution of phonons.
By studying Fe-doped ZnO pellets and thin films with various x-ray spectroscopic techniques, and complementing this with density functional theory calculations, we find that Fe-doping in bulk ZnO induces isovalent (and isostructural) cation substitut ion (Fe2+ -> Zn2+). In contrast to this, Fe-doping near the surface produces both isovalent and heterovalent substitution (Fe3+ -> Zn2+). The calculations performed herein suggest that the most likely defect structure is the single or double substitution of Zn with Fe, although, if additional oxygen is available, then Fe substitution with interstitial oxygen is even more energetically favourable. Furthermore, it is found that ferromagnetic states are energetically unfavourable, and ferromagnetic ordering is likely to be realized only through the formation of a secondary phase (i.e. ZnFe2O4), or codoping with Cu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا