ترغب بنشر مسار تعليمي؟ اضغط هنا

Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators

81   0   0.0 ( 0 )
 نشر من قبل Daniel Hsu
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Regularization is an essential element of virtually all kernel methods for nonparametric regression problems. A critical factor in the effectiveness of a given kernel method is the type of regularization that is employed. This article compares and contrasts members from a general class of regularization techniques, which notably includes ridge regression and principal component regression. We derive an explicit finite-sample risk bound for regularization-based estimators that simultaneously accounts for (i) the structure of the ambient function space, (ii) the regularity of the true regression function, and (iii) the adaptability (or qualification) of the regularization. A simple consequence of this upper bound is that the risk of the regularization-based estimators matches the minimax rate in a variety of settings. The general bound also illustrates how some regularization techniques are more adaptable than others to favorable regularity properties that the true regression function may possess. This, in particular, demonstrates a striking difference between kernel ridge regression and kernel principal component regression. Our theoretical results are supported by numerical experiments.



قيم البحث

اقرأ أيضاً

85 - Lee H. Dicker 2016
We study asymptotic minimax problems for estimating a $d$-dimensional regression parameter over spheres of growing dimension ($dto infty$). Assuming that the data follows a linear model with Gaussian predictors and errors, we show that ridge regressi on is asymptotically minimax and derive new closed form expressions for its asymptotic risk under squared-error loss. The asymptotic risk of ridge regression is closely related to the Stieltjes transform of the Marv{c}enko-Pastur distribution and the spectral distribution of the predictors from the linear model. Adaptive ridge estimators are also proposed (which adapt to the unknown radius of the sphere) and connections with equivariant estimation are highlighted. Our results are mostly relevant for asymptotic settings where the number of observations, $n$, is proportional to the number of predictors, that is, $d/ntorhoin(0,infty)$.
161 - Wenjia Wang , Bing-Yi Jing 2021
In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal conv ergence rate can be attained even if the smoothness of the imposed correlation function exceeds that of the true correlation function and the sampling scheme is quasi-uniform. As byproducts, we also obtain convergence rates of kernel ridge regression with misspecified kernel function, where the underlying truth is a deterministic function. The convergence rates of Gaussian process regression and kernel ridge regression are closely connected, which is aligned with the relationship between sample paths of Gaussian process and the corresponding reproducing kernel Hilbert space.
We propose statistical inferential procedures for panel data models with interactive fixed effects in a kernel ridge regression framework.Compared with traditional sieve methods, our method is automatic in the sense that it does not require the choic e of basis functions and truncation parameters.Model complexity is controlled by a continuous regularization parameter which can be automatically selected by generalized cross validation. Based on empirical processes theory and functional analysis tools, we derive joint asymptotic distributions for the estimators in the heterogeneous setting. These joint asymptotic results are then used to construct confidence intervals for the regression means and prediction intervals for the future observations, both being the first provably valid intervals in literature. Marginal asymptotic normality of the functional estimators in homogeneous setting is also obtained. Simulation and real data analysis demonstrate the advantages of our method.
132 - Martin Wahl 2018
We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing emp irical principal components by their population counterparts. Our approach relies on upper bounds for the excess risk of principal component analysis.
158 - Matthieu Solnon 2013
In this paper we study multi-task kernel ridge regression and try to understand when the multi-task procedure performs better than the single-task one, in terms of averaged quadratic risk. In order to do so, we compare the risks of the estimators wit h perfect calibration, the emph{oracle risk}. We are able to give explicit settings, favorable to the multi-task procedure, where the multi-task oracle performs better than the single-task one. In situations where the multi-task procedure is conjectured to perform badly, we also show the oracle does so. We then complete our study with simulated examples, where we can compare both oracle risks in more natural situations. A consequence of our result is that the multi-task ridge estimator has a lower risk than any single-task estimator, in favorable situations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا