ترغب بنشر مسار تعليمي؟ اضغط هنا

Ridge regression and asymptotic minimax estimation over spheres of growing dimension

86   0   0.0 ( 0 )
 نشر من قبل Lee H. Dicker
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Lee H. Dicker




اسأل ChatGPT حول البحث

We study asymptotic minimax problems for estimating a $d$-dimensional regression parameter over spheres of growing dimension ($dto infty$). Assuming that the data follows a linear model with Gaussian predictors and errors, we show that ridge regression is asymptotically minimax and derive new closed form expressions for its asymptotic risk under squared-error loss. The asymptotic risk of ridge regression is closely related to the Stieltjes transform of the Marv{c}enko-Pastur distribution and the spectral distribution of the predictors from the linear model. Adaptive ridge estimators are also proposed (which adapt to the unknown radius of the sphere) and connections with equivariant estimation are highlighted. Our results are mostly relevant for asymptotic settings where the number of observations, $n$, is proportional to the number of predictors, that is, $d/ntorhoin(0,infty)$.



قيم البحث

اقرأ أيضاً

162 - Daniel J. McDonald 2017
This paper presents minimax rates for density estimation when the data dimension $d$ is allowed to grow with the number of observations $n$ rather than remaining fixed as in previous analyses. We prove a non-asymptotic lower bound which gives the wor st-case rate over standard classes of smooth densities, and we show that kernel density estimators achieve this rate. We also give oracle choices for the bandwidth and derive the fastest rate $d$ can grow with $n$ to maintain estimation consistency.
196 - Xinyi Xu , Feng Liang 2010
We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics of minimax risk in the case of Gaussian errors. We derive the convergence rate and constant for minimax risk among Bayesian predictive densities under Gaussian priors and we show that this minimax risk is asymptotically equivalent to that among all density estimators.
In this study, we propose shrinkage methods based on {it generalized ridge regression} (GRR) estimation which is suitable for both multicollinearity and high dimensional problems with small number of samples (large $p$, small $n$). Also, it is obtain ed theoretical properties of the proposed estimators for Low/High Dimensional cases. Furthermore, the performance of the listed estimators is demonstrated by both simulation studies and real-data analysis, and compare its performance with existing penalty methods. We show that the proposed methods compare well to competing regularization techniques.
Regularization is an essential element of virtually all kernel methods for nonparametric regression problems. A critical factor in the effectiveness of a given kernel method is the type of regularization that is employed. This article compares and co ntrasts members from a general class of regularization techniques, which notably includes ridge regression and principal component regression. We derive an explicit finite-sample risk bound for regularization-based estimators that simultaneously accounts for (i) the structure of the ambient function space, (ii) the regularity of the true regression function, and (iii) the adaptability (or qualification) of the regularization. A simple consequence of this upper bound is that the risk of the regularization-based estimators matches the minimax rate in a variety of settings. The general bound also illustrates how some regularization techniques are more adaptable than others to favorable regularity properties that the true regression function may possess. This, in particular, demonstrates a striking difference between kernel ridge regression and kernel principal component regression. Our theoretical results are supported by numerical experiments.
161 - Wenjia Wang , Bing-Yi Jing 2021
In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal conv ergence rate can be attained even if the smoothness of the imposed correlation function exceeds that of the true correlation function and the sampling scheme is quasi-uniform. As byproducts, we also obtain convergence rates of kernel ridge regression with misspecified kernel function, where the underlying truth is a deterministic function. The convergence rates of Gaussian process regression and kernel ridge regression are closely connected, which is aligned with the relationship between sample paths of Gaussian process and the corresponding reproducing kernel Hilbert space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا