ﻻ يوجد ملخص باللغة العربية
Complementary media (CM) interacting with arbitrarily situated obstacles are usually less discussed. In this paper, an analytical framework based on multiple scattering theory is established for analyzing such a mismatched case. As examples, CM-based devices, i.e., a superlens and superscatterer, are discussed. From an analysis, the cancellation mechanism of the mismatched CM is studied. In addition, numerical results are provided for illustration. Moreover, further study shows that such cancellation effects might rely on specific conditions. Actually, the conclusions are not restricted to any specific frequencies; they could be extended to many other areas including applications to active cloaking, antennas, and wireless power transfer.
Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowskis tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium
An analytical representation for the spatial and temporal dynamics of the simplest of the diffusions -- Bronwian diffusion in an homogeneous slab geometry, with radial symmetry -- is presented. This representation is useful since it describes the tim
In the experiments on stress-induced phase transitions in SMA strips, several interesting instability phenomena have been observed, including a necking-type instability, a shear-type instability and an orientation instability. By using the smallness
In the context of analog gravity the Hawking effect can be generalized to domains outside astrophysics. Arguably, the most successful systems for this analogy have been so far the sonic and the optical ones. However, problems arise in the analog syst
In this paper propagation properties of a parallel-plate waveguide with tunable artificial impedance surfaces as sidewalls are studied both analytically and numerically. The impedance surfaces comprise an array of patches over a dielectric slab with