ﻻ يوجد ملخص باللغة العربية
In the experiments on stress-induced phase transitions in SMA strips, several interesting instability phenomena have been observed, including a necking-type instability, a shear-type instability and an orientation instability. By using the smallness of the maximum strain, the thickness and width of the strip, we use a methodology, which combines series expansions and asymptotic expansions, to derive the asymptotic normal form equations, which can yield the leading-order behavior of the original three-dimensional field equations. Our analytical results reveal that the inclination of the phase front is a phenomenon of localization-induced buckling (or phase-transition-induced buckling as the localization is caused by the phase transition). Due to the similarities between the development of the Luders band in a mild steel and the stress-induced transformations in a SMA, the present results give a strong analytical evidence that the former is also caused by macroscopic effects instead of microscopic effects. Our analytical results also reveal more explicitly the important roles played by the geometrical parameters.
Complementary media (CM) interacting with arbitrarily situated obstacles are usually less discussed. In this paper, an analytical framework based on multiple scattering theory is established for analyzing such a mismatched case. As examples, CM-based
An analytical representation for the spatial and temporal dynamics of the simplest of the diffusions -- Bronwian diffusion in an homogeneous slab geometry, with radial symmetry -- is presented. This representation is useful since it describes the tim
Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwells equations are present upon variation of the fundamental Lagrangian; (ii) the trace of the canonical energy-momentum te
The goal of this paper is to present a previously published work [1] in an errorless form. The work has studied the scattering of electromagnetic plane wave by an impedance strip placed in homogeneous isotropic chiral medium using Kobayashi Potential
In this paper we report on 2D numerical simulations concerning linear and nonlinear evolution of surface-tension-driven instability in two-fluid systems heated from below using classical and phase-field models. In the phase-field formalism, one intro