ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Criticality and Inhomogeneous Magnetic Order in Fe-doped alpha-YbAlB4

96   0   0.0 ( 0 )
 نشر من قبل Douglas E. MacLaughlin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intermediate-valent polymorphs $alpha$- and $beta$-YbAlB$_4$ exhibit quantum criticality and other novel properties not usually associated with intermediate valence. Iron doping induces quantum criticality in $alpha$-YbAlB$_4$ and magnetic order in both compounds. We report results of muon spin relaxation ($mu$SR) experiments in the intermediate-valent alloys $alpha$-YbAl$_{1-x}$Fe$_x$B$_4$, $x = 0.014$ and 0.25. For $x = 0.014$ we find no evidence for magnetic order down to 25 mK@. The dynamic muon spin relaxation rate $lambda_d$ exhibits a power-law temperature dependence $lambda_d propto T^{-a}$, $a = 0.40(4)$, in the temperature range 100 mK--2 K, in disagreement with predictions by theories of antiferromagnetic (AFM) or valence quantum critical behavior. For $x = 0.25$, where AFM order develops in the temperature range 7.5--10 K, where we find coexistence of meso- or macroscopically segregated paramagnetic and AFM phases, with considerable disorder in the latter down to 2 K.

قيم البحث

اقرأ أيضاً

Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning t he material to a quantum critical point using a control parameter such as the magnetic field, pressure, or chemical composition. Our high precision magnetization measurements of the ultrapure f-electron based superconductor {beta}-YbAlB4 demonstrate a scaling of its free energy indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi-liquid behavior takes place in a mixed-valence state, in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.
We measured the transverse magnetoresistivity of the mixed valence compound $alpha$-YbAlB$_4$. Two configurations were used where current was applied along [110] direction for both and magnetic field was applied along [-110] and $c$-axis. We found th e transverse magnetoresistivity is highly anisotropic. In the weak field below 1 T, it is consistent with stronger $c$-$f$ hybridization in the $ab$ plane which was suggested from the previous zero field resistivity measurements. At the higher field above 3 T, we observed a negative transverse magnetoresistivity for the field applied along the $c$-axis. The temperature dependences of the resistivity measured at several different fields suggest the suppression of the heavy fermion behavior at the characteristic field of $sim 5.5$ T.
In this chapter we discuss aspects of the quantum critical behavior that occurs at a quantum phase transition separating a topological phase from a conventionally ordered one. We concentrate on a family of quantum lattice models, namely certain defor mations of the toric code model, that exhibit continuous quantum phase transitions. One such deformation leads to a Lorentz-invariant transition in the 3D Ising universality class. An alternative deformation gives rise to a so-called conformal quantum critical point where equal-time correlations become conformally invariant and can be related to those of the 2D Ising model. We study the behavior of several physical observables, such as non-local operators and entanglement entropies, that can be used to characterize these quantum phase transitions. Finally, we briefly consider the role of thermal fluctuations and related phase transitions, before closing with a short overview of field theoretical descriptions of these quantum critical points.
LaCrGe$_3$ has attracted attention as a paradigm example of the avoidance of ferromagnetic (FM) quantum criticality in an itinerant magnet. By combining thermodynamic, transport, x-ray and neutron scattering as well as $mu$SR measurements, we refined the temperature-pressure phase diagram of LaCrGe$_3$. We provide thermodynamic evidence (i) for the first-order character of the FM transition when it is suppressed to low temperatures and (ii) for the formation of new phases at high pressures. From our microscopic data, we infer that short-range FM ordered clusters exist in these high-pressure phases. These results suggest that LaCrGe$_3$ is a rare example, which fills the gap between the two extreme limits of avoided FM quantum criticality in clean and strongly disordered metals.
Experimental bulk susceptibility X(T) and magnetization M(H,T) of the S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5 (x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy spectrum of non-interacting open segments describes very well experimental data above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping concentration x.This observation suggests the appearance of a gapless quantum phase due to a broad distribution of effective couplings between the dilution-induced moments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا