ﻻ يوجد ملخص باللغة العربية
Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission (2PPE) at very low temperatures under ultra-high vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n = 1) image-potential state by more than two orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even one monolayer of helium increases its lifetime by one order of magnitude compared to the bare Cu(111) surface.
We have studied experimentally and theoretically the influence of electron-electron collisions on the propagation of electron beams in a two-dimensional electron gas for excess injection energies ranging from zero up to the Fermi energy. We find that
We explore the second order bilinear magnetoelectric resistance (BMER) effect in the d-electron-based two-dimensional electron gas (2DEG) at the SrTiO3 (111) surface. We find an evidence of a spin-split band structure with the archetypal spin-momentu
The lifting of the two-fold degeneracy of the conduction valleys in a strained silicon quantum well is critical for spin quantum computing. Here, we obtain an accurate measurement of the splitting of the valley states in the low-field region of inter
We investigate the adsorption of cobalt phthalocyanine (CoPc) molecules on a thin layer of cobalt oxide grown on Ir(100). To that end we compare the results of low-temperature scanning tunneling microscopy (STM) with those of ab-initio density functi
Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111)7x7 single crystals with a thickness from 9 to 50 monolayers have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence