ترغب بنشر مسار تعليمي؟ اضغط هنا

$chi$-bounded families of oriented graphs

179   0   0.0 ( 0 )
 نشر من قبل Pierre Aboulker
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A famous conjecture of Gyarfas and Sumner states for any tree $T$ and integer $k$, if the chromatic number of a graph is large enough, either the graph contains a clique of size $k$ or it contains $T$ as an induced subgraph. We discuss some results and open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star $S$ and integer $k$, if the chromatic number of a digraph is large enough, either the digraph contains a clique of size $k$ or it contains $S$ as an induced subgraph. As an evidence, we prove that for any oriented star $S$, every oriented graph with sufficiently large chromatic number contains either a transitive tournament of order $3$ or $S$ as an induced subdigraph. We then study for which sets ${cal P}$ of orientations of $P_4$ (the path on four vertices) similar statements hold. We establish some positive and negative results.



قيم البحث

اقرأ أيضاً

A grounded L-graph is the intersection graph of a collection of L shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number $omega$ has chromatic number at most $17omega^4$. This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially $chi$-bounded. We also survey $chi$-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.
The second authors $omega$, $Delta$, $chi$ conjecture proposes that every graph satisties $chi leq lceil frac 12 (Delta+1+omega)rceil$. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results we introduce a very useful $chi$-preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so-called skeletal graphs.
In 1998 the second author proved that there is an $epsilon>0$ such that every graph satisfies $chi leq lceil (1-epsilon)(Delta+1)+epsilonomegarceil$. The first author recently proved that any graph satisfying $omega > frac 23(Delta+1)$ contains a sta ble set intersecting every maximum clique. In this note we exploit the latter result to give a much shorter, simpler proof of the former. We include, as a certificate of simplicity, an appendix that proves all intermediate results with the exception of Halls Theorem, Brooks Theorem, the Lovasz Local Lemma, and Talagrands Inequality.
We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipa rtite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity $lambda$, can be viewed as a strong generalisation of Jerrum and Sinclairs work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights.
We prove a Chernoff-like large deviation bound on the sum of non-independent random variables that have the following dependence structure. The variables $Y_1,...,Y_r$ are arbitrary Boolean functions of independent random variables $X_1,...,X_m$, mod ulo a restriction that every $X_i$ influences at most $k$ of the variables $Y_1,...,Y_r$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا