ﻻ يوجد ملخص باللغة العربية
Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition), dominated by the complex interplay between DLVO interactions and shear flow. The quantitative understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a systematic numerical study, based on the governing master kinetic equation (population-balance) for the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth, controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the reactivity of which increases along with their size growth. When their size reaches a critical threshold, a very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier between particles. This stage terminates when a dynamic balance between shear-induced aggregation and cluster breakage is reached. It is also observed that these systems are characterized by a cluster mass distribution that for a long time presents a well-defined bimodality. The model predictions are quantitatively in excellent agreement with available experimental data, showing how the theoretical picture is able to quantitatively account for the underlying nonequilibrum physics.
Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as
Transport properties of dense fluids are fundamentally challenging, because the powerful approaches of equilibrium statistical physics cannot be applied. Polar fluids compound this problem, because the long-range interactions preclude the use of a si
We study a novel phase of active polar fluids, which is characterized by the continuous creation and destruction of dense clusters due to self-sustained turbulence. This state arises due to the interplay of the self-advection of the aligned swimmers
The velocity fluctuations present in macroscopically homogeneous suspensions of neutrally buoyant, non-Brownian spheres undergoing simple shear flow, and their dependence on the microstructure developed by the suspensions, are investigated in the lim
The permeability anisotropy that results from a shear displacement u between the complementary self-affine walls of a rough fracture is investigated. Experiments in which a dyed fluid displaces a transparent one as it is radially injected into a tran