ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent-state path integrals in the continuum: The SU(2) case

49   0   0.0 ( 0 )
 نشر من قبل Georgios Kordas Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define the time-continuous spin coherent-state path integral in a way that is free from inconsistencies. The proposed definition is used to reproduce known exact results. Such a formalism opens new possibilities for applying approximations with improved accuracy and can be proven useful in a great variety of problems where spin Hamiltonians are used.



قيم البحث

اقرأ أيضاً

We discuss the time-continuous path integration in the coherent states basis in a way that is free from inconsistencies. Employing this notion we reproduce known and exact results working directly in the continuum. Such a formalism can set the basis to develop perturbative and non-perturbative approximations already known in the quantum field theory community. These techniques can be proven useful in a great variety of problems where bosonic Hamiltonians are used.
97 - C. A. Brannen 2010
The spin of a free electron is stable but its position is not. Recent quantum information research by G. Svetlichny, J. Tolar, and G. Chadzitaskos have shown that the Feynman emph{position} path integral can be mathematically defined as a product of incompatible states; that is, as a product of mutually unbiased bases (MUBs). Since the more common use of MUBs is in finite dimensional Hilbert spaces, this raises the question what happens when emph{spin} path integrals are computed over products of MUBs? Such an assumption makes spin no longer stable. We show that the usual spin-1/2 is obtained in the long-time limit in three orthogonal solutions that we associate with the three elementary particle generations. We give applications to the masses of the elementary leptons.
It was proposed in [(https://doi.org/10.1103/PhysRevLett.114.145301){Chen et al., Phys. Rev. Lett. $mathbf{114}$, 145301 (2015)}] that spin-2 chains display an extended critical phase with enhanced SU$(3)$ symmetry. This hypothesis is highly unexpect ed for a spin-2 system and, as we argue, would imply an unconventional mechanism for symmetry emergence. Yet, the absence of convenient critical points for renormalization group perturbative expansions, allied with the usual difficulty in the convergence of numerical methods in critical or small-gapped phases, renders the verification of this hypothetical SU$(3)$-symmetric phase a non-trivial matter. By tracing parallels with the well-understood phase diagram of spin-1 chains and searching for signatures robust against finite-size effects, we draw criticism on the existence of this phase. We perform non-Abelian density matrix renormalization group studies of multipolar static correlation function, energy spectrum scaling, single-mode approximation, and entanglement spectrum to shed light on the problem. We determine that the hypothetical SU$(3)$ spin-2 phase is, in fact, dominated by ferro-octupolar correlations and also observe a lack of Luttinger-liquid-like behavior in correlation functions that suggests that is perhaps not critical. We further construct an infinite family of spin-$S$ systems with similar ferro-octupolar-dominated quasi-SU$(3)$-like phenomenology; curiously, we note that the spin-3 version of the problem is located in a subspace of exact G$_2$ symmetry, making this a point of interest for search of Fibonacci topological properties in magnetic systems.
106 - P. T. Greenland 2010
We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.
The N00N state, which was introduced as a resource for quantum-enhanced metrology, is in fact a special case of a superposition of two SU(2) coherent states. We show here explicitly the derivation of the N00N state from the superposition state. This derivation makes clear the connection between these seemingly disparate states as well as shows how the N00N state can be generalized to a superposition of SU(2) coherent states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا