ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Correlation Between Dust and H$alpha$ Emission in Dwarf Irregular Galaxies

71   0   0.0 ( 0 )
 نشر من قبل Jimmy
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a sample of dwarf irregular galaxies selected from the ALFALFA blind HI-survey and observed using the VIMOS IFU, we investigate the relationship between H$alpha$ emission and Balmer optical depth ($tau_{text{b}}$). We find a positive correlation between H$alpha$ luminosity surface density and Balmer optical depth in 8 of 11 at $geq$ 0.8$sigma$ significance (6 of 11 at $geq$ 1.0$sigma$) galaxies. Our spaxels have physical scales ranging from 30 to 80 pc, demonstrating that the correlation between these two variables continues to hold down to spatial scales as low as 30 pc. Using the Spearmans rank correlation coefficient to test for correlation between $Sigma_{text{H}alpha}$ and $tau_{text{b}}$ in all the galaxies combined, we find $rho = 0.39$, indicating a positive correlation at 4$sigma$ significance. Our low stellar-mass galaxy results are in agreement with observations of emission line regions in larger spiral galaxies, indicating that this relationship is independent of the size of the galaxy hosting the emission line region. The positive correlation between H$alpha$ luminosity and Balmer optical depth within spaxels is consistent with the hypothesis that young star-forming regions are surrounded by dusty birth-clouds.

قيم البحث

اقرأ أيضاً

61 - Yoichi Tamura 2009
Lyman-alpha emitters are thought to be young, low-mass galaxies with ages of ~10^8 yr. An overdensity of them in one region of the sky (the SSA 22 field) traces out a filamentary structure in the early Universe at a redshift of z = 3.1 (equivalent to 15 per cent of the age of the Universe) and is believed to mark a forming protocluster. Galaxies that are bright at (sub)millimetre wavelengths are undergoing violent episodes of star formation, and there is evidence that they are preferentially associated with high-redshift radio galaxies, so the question of whether they are also associated with the most significant large-scale structure growing at high redshift (as outlined by Lyman-alpha emitters) naturally arises. Here we report an imaging survey of 1,100-um emission in the SSA 22 region. We find an enhancement of submillimetre galaxies near the core of the protocluster, and a large-scale correlation between the submillimetre galaxies and the low-mass Lyman-alpha emitters, suggesting synchronous formation of the two very different types of star-forming galaxy within the same structure at high redshift. These results are in general agreement with our understanding of the formation of cosmic structure.
334 - M. Bellazzini 2017
We present the results of the spectroscopic and photometric follow-up of two field galaxies that were selected as possible stellar counterparts of local high velocity clouds. Our analysis shows that the two systems are distant (D>20 Mpc) dwarf irregu lar galaxies unrelated to the local HI clouds. However, the newly derived distance and structural parameters reveal that the two galaxies have luminosities and effective radii very similar to the recently identified Ultra Diffuse Galaxies (UDGs). At odds with classical UDGs, they are remarkably isolated, having no known giant galaxy within ~2.0 Mpc. Moreover, one of them has a very high gas content compared to galaxies of similar stellar mass, with a HI to stellar mass ratio M_HI/M_* ~90, typical of almost-dark dwarfs. Expanding on this finding, we show that extended dwarf irregulars overlap the distribution of UDGs in the M_V vs. log(r_e) plane and that the sequence including dwarf spheroidals, dwarf irregulars and UDGs appears as continuously populated in this plane.
Turbulence has the potential for creating gas density enhancements that initiate cloud and star formation (SF), and it can be generated locally by SF. To study the connection between turbulence and SF, we looked for relationships between SF traced by FUV images, and gas turbulence traced by kinetic energy density (KED) and velocity dispersion ($v_{disp}$) in the LITTLE THINGS sample of nearby dIrr galaxies. We performed 2D cross-correlations between FUV and KED images, measured cross-correlations in annuli to produce correlation coefficients as a function of radius, and determined the cumulative distribution function of the cross correlation value. We also plotted on a pixel-by-pixel basis the locally excess KED, $v_{disp}$, and HI mass surface density, $Sigma_{rm HI}$, as determined from the respective values with the radial profiles subtracted, versus the excess SF rate density $Sigma_{rm SFR}$, for all regions with positive excess $Sigma_{rm SFR}$. We found that $Sigma_{rm SFR}$ and KED are poorly correlated. The excess KED associated with SF implies a $sim0.5$% efficiency for supernova energy to pump local HI turbulence on the scale of resolution here, which is a factor of $sim2$ too small for all of the turbulence on a galactic scale. The excess $v_{disp}$ in SF regions is also small, only $sim0.37$ km s$^{-1}$. The local excess in $Sigma_{rm HI}$ corresponding to an excess in $Sigma_{rm SFR}$ is consistent with an HI consumption time of $sim1.6$ Gyr in the inner parts of the galaxies. The similarity between this timescale and the consumption time for CO implies that CO-dark molecular gas has comparable mass to HI in the inner disks.
The near and mid-infrared characteristics of large amplitude, Mira, variables in Local Group dwarf irregular galaxies (LMC, NGC 6822, IC 1613, Sgr dIG) are described. Two aspects of these variables are discussed. First, the short period (P < 420 days ) Miras are potentially powerful distance indicators, provided that they have low circumstellar extinction, or can be corrected for extinction. These are the descendants of relatively low mass stars. Secondly, the longer period stars, many of which undergo hot bottom burning, are poorly understood. These provide new insight into the evolution of intermediate mass stars during the high mass-loss phases, but their use as distance indicators depends on a much firmer understanding of their evolution. The change in slope of the K period luminosity relation for O-rich stars that is seen around 400 to 420 days in the LMC is due to the onset of hot bottom burning. It will be sensitive to metallicity and should therefore be expected at different periods in populations with significant differences from the LMC. The [4.5] period-luminosity relation splits into two approximately parallel sequences. The fainter one fits stars where the mid-infrared flux originates from the stellar photosphere, while the brighter one fits observations dominated by the circumstellar shell.
We use time-domain optical spectroscopy to distinguish between broad emission lines powered by accreting black holes (BHs) or stellar processes (i.e., supernovae) for 16 galaxies identified as AGN candidates by Reines etal (2013). Our study is primar ily focused on those objects with narrow emission-line ratios dominated by star formation. Based on follow-up spectra taken with the Magellan Echellette Spectrograph (MagE), the Dual Imaging Spectrograph, and the Ohio State Multi-Object Spectrograph, we find that the broad H$alpha$ emission has faded or was ambiguous for all of the star-forming objects (14/16) over baselines ranging from 5 to 14 years. For the two objects in our follow-up sample with narrow-line AGN signatures (RGG 9 and RGG 119), we find persistent broad H$alpha$ emission consistent with an AGN origin. Additionally, we use our MagE observations to measure stellar velocity dispersions for 15 objects in the Reines et al. (2013) sample, all with narrow-line ratios indicating the presence of an AGN. Stellar masses range from $sim5times10^{8}$ to $3times10^{9}$~msun, and we measure $sigma_{ast}$ ranging from $28-71~{rm km~s^{-1}}$. These $sigma_{ast}$ correspond to some of the lowest-mass galaxies with optical signatures of AGN activity. We show that RGG 119, the one object which has both a measured $sigma_{ast}$ and persistent broad H$alpha$ emission, falls near the extrapolation of the $rm M_{BH}-sigma_{star}$ relation to the low-mass end.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا