ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for correlations between turbulence and star formation in LITTLE THINGS dwarf irregular galaxies

216   0   0.0 ( 0 )
 نشر من قبل Deidre Hunter
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulence has the potential for creating gas density enhancements that initiate cloud and star formation (SF), and it can be generated locally by SF. To study the connection between turbulence and SF, we looked for relationships between SF traced by FUV images, and gas turbulence traced by kinetic energy density (KED) and velocity dispersion ($v_{disp}$) in the LITTLE THINGS sample of nearby dIrr galaxies. We performed 2D cross-correlations between FUV and KED images, measured cross-correlations in annuli to produce correlation coefficients as a function of radius, and determined the cumulative distribution function of the cross correlation value. We also plotted on a pixel-by-pixel basis the locally excess KED, $v_{disp}$, and HI mass surface density, $Sigma_{rm HI}$, as determined from the respective values with the radial profiles subtracted, versus the excess SF rate density $Sigma_{rm SFR}$, for all regions with positive excess $Sigma_{rm SFR}$. We found that $Sigma_{rm SFR}$ and KED are poorly correlated. The excess KED associated with SF implies a $sim0.5$% efficiency for supernova energy to pump local HI turbulence on the scale of resolution here, which is a factor of $sim2$ too small for all of the turbulence on a galactic scale. The excess $v_{disp}$ in SF regions is also small, only $sim0.37$ km s$^{-1}$. The local excess in $Sigma_{rm HI}$ corresponding to an excess in $Sigma_{rm SFR}$ is consistent with an HI consumption time of $sim1.6$ Gyr in the inner parts of the galaxies. The similarity between this timescale and the consumption time for CO implies that CO-dark molecular gas has comparable mass to HI in the inner disks.

قيم البحث

اقرأ أيضاً

We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and Blue Compact Dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates, OB associations by mass and mass surface density, O stars by their numbers and near-ultraviolet absolute magnitudes, and HII regions by Halpha surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, HI surface density, and star formation rate surface density. We find no trend of cluster characteristics with environmental properties, implying that larger scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and HI surface density, and there is a trend of higher HII region Halpha surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas are found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of star formation rate density. However, there is an increase in the ratio of the number of clusters to number of O stars with pressure, perhaps reflecting an increase in clustering properties with star formation rate.
Dwarf Irregular galaxies (dIrrs) are the smallest stellar systems with extended HI discs. The study of the kinematics of such discs is a powerful tool to estimate the total matter distribution at these very small scales. In this work, we study the HI kinematics of 17 galaxies extracted from the `Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey (LITTLE THINGS). Our approach differs significantly from previous studies in that we directly fit 3D models (two spatial dimensions plus one spectral dimension) using the software $^text{3D}$BAROLO, fully exploiting the information in the HI datacubes. For each galaxy we derive the geometric parameters of the HI disc (inclination and position angle), the radial distribution of the surface density, the velocity-dispersion ($sigma_v$) profile and the rotation curve. The circular velocity (V$_{text{c}}$), which traces directly the galactic potential, is then obtained by correcting the rotation curve for the asymmetric drift. As an initial application, we show that these dIrrs lie on a baryonic Tully-Fisher relation in excellent agreement with that seen on larger scales. The final products of this work are high-quality, ready-to-use kinematic data ($textrm{V}_textrm{c}$ and $sigma_v$) that we make publicly available. These can be used to perform dynamical studies and improve our understanding of these low-mass galaxies.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitu de below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 26 LITTLE THINGS dwarf galaxies is alpha =-0.32 +/- 0.24 which is in accordance with the previous results found for low surface brightness galaxies (alpha = -0.2 +/- 0.2) as well as the seven THINGS dwarf galaxies (alpha =-0.29 +/- 0.07). However, this significantly deviates from the cusp-like dark matter distribution predicted by dark-matter-only Lambda CDM simulations. Instead our results are more in line with the shallower slopes found in the Lambda CDM SPH simulations of dwarf galaxies in which the effect of baryonic feedback processes is included. In addition, we discuss the central dark matter distribution of DDO 210 whose stellar mass is relatively low in our sample to examine the scenario of inefficient supernova feedback in low mass dwarf galaxies predicted from recent Lambda SPH simulations of dwarf galaxies where central cusps still remain.
Two dwarf irregular galaxies DDO 187 and NGC 3738 exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the HI distributio n and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate (LSF) halves. We find that the pressure and gas density are higher on the HSF sides by 30-70%. In addition we find in both galaxies that the HI velocity fields exhibit significant deviations from ordered rotation and there are large regions of high velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا