ﻻ يوجد ملخص باللغة العربية
Let $mathbf{k} := (k_1,dots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;mathbf{k})$ to denote the maximum of $F(G;mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by ErdH{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every $mathbf{k}$ and $n$, there is a complete multipartite graph $G$ on $n$ vertices with $F(G;mathbf{k}) = F(n;mathbf{k})$. Also, for every $mathbf{k}$ we construct a finite optimisation problem whose maximum is equal to the limit of $log_2 F(n;mathbf{k})/{nchoose 2}$ as $n$ tends to infinity. Our final result is a stability theorem for complete multipartite graphs $G$, describing the asymptotic structure of such $G$ with $F(G;mathbf{k}) = F(n;mathbf{k}) cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem.
Given a sequence $mathbf{k} := (k_1,ldots,k_s)$ of natural numbers and a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ conta
Let $textbf{k} := (k_1,ldots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;textbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ con
Let $f(n,r)$ denote the maximum number of colourings of $A subseteq lbrace 1,ldots,nrbrace$ with $r$ colours such that each colour class is sum-free. Here, a sum is a subset $lbrace x,y,zrbrace$ such that $x+y=z$. We show that $f(n,2) = 2^{lceil n/2r
Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the ErdH{o}s-Posa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the ErdH{o}s-Posa property, an
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large