ترغب بنشر مسار تعليمي؟ اضغط هنا

The Thermonuclear Runaway and the Classical Nova Outburst

77   0   0.0 ( 0 )
 نشر من قبل Sumner Starrfield
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nova explosions occur on the white dwarf component of a Cataclysmic Variable binary stellar system that is accreting matter lost by its companion. When sufficient material has been accreted by the white dwarf, a thermonuclear runaway occurs and ejects material in what is observed as a Classical Nova explosion. We describe both the recent advances in our understanding of the progress of the outburst and outline some of the puzzles that are still outstanding. We report on the effects of improving both the nuclear reaction rate library and including a modern nuclear reaction network in our one-dimensional, fully implicit, hydrodynamic computer code. In addition, there has been progress in observational studies of Supernovae Ia with implications about the progenitors and we discuss that in this review.


قيم البحث

اقرأ أيضاً

We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 years after the classical nova event, lasted for more than 400 days, and reached an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst in a classical nova system. However, the outburst duration, high velocity ($>$2000 km s$^{-1}$) features in the optical line profiles, luminous optical emission, and the presence of prominent long-lasting radio emission, together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. There are striking similarities between this V1047 Cen outburst and those of combination novae in classical symbiotic stars. We suggest that the outburst may have started as a dwarf nova that led to the accretion of a massive disk, which in turn triggered enhanced nuclear shell burning on the white dwarf and eventually led to generation of a wind/outflow. From optical photometry we find a bf{possible} orbital period of 8.36 days, which supports the combination nova scenario and makes the system an intermediate case between typical cataclysmic variables and classical symbiotic binaries. If true, such a phenomenon would be the first of its kind to occur in a system that has undergone a classical nova eruption and is intermediate between cataclysmic variables and symbiotic binaries.
The OGLE-II event sc5_2859 was previously identified as the third longest microlensing event ever observed. Additional photometric observations from the EROS (Experience de Recherche dObjets Sombres) survey and spectroscopic observations of the candi date star are used to test the microlensing hypothesis.The combined OGLE and EROS data provide a high quality coverage of the light curve. The colour of the sc5_2859 event is seen to change with time. A spectrum taken in 2003 exhibits a strong Halpha emission line. The additionnal data show that the OGLE-II sc5_2859 event is actually a classical nova outburst.
68 - R. Raddi 2019
We report the discovery of three stars that, along with the prototype LP40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ON e-dominated atmospheres enriched with remarkably similar amounts of nuclear ashes of partial O- and Si-burning. Kinematic evidence is consistent with ejection from a binary supernova progenitor; at least two stars have rest-frame velocities indicating they are unbound to the Galaxy. With masses and radii ranging between 0.20-0.28 Msun and 0.16-0.60 Rsun, respectively, we speculate these inflated white dwarfs are the partly burnt remnants of either peculiar Type Iax or electron-capture supernovae. Adopting supernova rates from the literature, we estimate that ~20 LP40-365 stars brighter than 19 mag should be detectable within 2 kpc from the Sun at the end of the Gaia mission. We suggest that as they cool, these stars will evolve in their spectroscopic appearance, and eventually become peculiar O-rich white dwarfs. Finally, we stress that the discovery of new LP40-365 stars will be useful to further constrain their evolution, supplying key boundary conditions to the modelling of explosion mechanisms, supernova rates, and nucleosynthetic yields of peculiar thermonuclear explosions.
85 - Gavin Ramsay 2016
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Pegs transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.
The nova outburst experienced in 2010 by the symbiotic binary Mira V407 Cyg has been extensively studied at optical and infrared wavelengths with both photometric and spectroscopic observations. This outburst, reminiscent of similar events displayed by RS Oph, can be described as a very fast He/N nova erupting while being deeply embedded in the dense wind of its cool giant companion. The hard radiation from the initial thermonuclear flash ionizes and excites the wind of the Mira over great distances (recombination is observed on a time scale of 4 days). The nova ejecta is found to progressively decelerate with time as it expands into the Mira wind. This is deduced from line widths which change from a FWHM of 2760 km/s on day +2.3 to 200 km/s on day +196. The wind of the Mira is massive and extended enough for an outer neutral and unperturbed region to survive at all outburst phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا