ﻻ يوجد ملخص باللغة العربية
We experimentally re-evaluate the fine structure of Sn$^{11+...14+}$ ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole $M1$ transitions, in a wavelength range covering 260,nm to 780,nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of emph{ab initio} calculations based on Fock space coupled cluster theory. We validate our line identification using semi-empirical Cowan calculations with adjustable wavefunction parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.
To provide spectroscopic data for lowly charged tungsten ions relevant to fusion research, this work focuses on the W8+ ion. Six visible spectra lines in the range of 420-660 nm are observed with a compact electron-beam ion trap in Shanghai. These li
In this work, visible and extreme ultraviolet spectra of W7+ are measured using the high-temperature superconducting electron-beam ion trap (EBIT) at the Shanghai EBIT Laboratory under extremely low-energy conditions (lower than the nominal electron-
A low-energy, compact and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by
Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this is
We analyze the complex level structure of ions with many-valence-electron open [Kr] 4$d^textrm{m}$ sub-shells ($textrm{m}$=7-4) with ab initio calculations based on configuration-interaction many-body perturbation theory (CI+MBPT). Charge-state-resol