ﻻ يوجد ملخص باللغة العربية
For a compact $ d $-dimensional rectifiable subset of $ mathbb{R}^{p} $ we study asymptotic properties as $ Ntoinfty $ of $N$-point configurations minimizing the energy arising from a Riesz $ s $-potential $ 1/r^s $ and an external field in the hypersingular case $ sgeq d$. Formulas for the weak$ ^* $ limit of normalized counting measures of such optimal point sets and the first-order asymptotic values of minimal energy are obtained. As an application, we derive a method for generating configurations whose normalized counting measures converge to a given absolutely continuous measure supported on a rectifiable subset of $ mathbb{R}^{p} $. Results on separation and covering properties of discrete minimizers are given. Our theorems are illustrated with several numerical examples.
We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $Asubset mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $sin [p-2, p-1)$, we prove that th
For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a la
Minimum Riesz energy problems in the presence of an external field are analyzed for a condenser with touching plates. We obtain sufficient and/or necessary conditions for the solvability of these problems in both the unconstrained and the constrained
We provide a proof of mean-field convergence of first-order dissipative or conservative dynamics of particles with Riesz-type singular interaction (the model interaction is an inverse power $s$ of the distance for any $0<s<d$) when assuming a certain
We study the constrained minimum energy problem with an external field relative to the $alpha$-Riesz kernel $|x-y|^{alpha-n}$ of order $alphain(0,n)$ for a generalized condenser $mathbf A=(A_i)_{iin I}$ in $mathbb R^n$, $ngeqslant 3$, whose oppositel