ﻻ يوجد ملخص باللغة العربية
We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheets lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated to the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to dynamic relative motions of polarity patches within the active region.
Here we report on the unique observation of flaring coronal loops at the solar limb using high resolution imaging spectropolarimetry from the Swedish 1-meter Solar Telescope. The vantage position, orientation and nature of the chromospheric material
We demonstrate the sensitivity of magnetic energy and helicity computations regarding the quality of the underlying coronal magnetic field model. We apply the method of Wiegelmann & Inhester (2010) to a series of SDO/HMI vector magnetograms, and disc
Context: Knowledge about the coronal magnetic field is important to the understanding the structure of the solar corona. We compute the field in the higher layers of the solar atmosphere from the measured photospheric field under the assumption that
We have studied the relationship between the solar-wind speed $[V]$ and the coronal magnetic-field properties (a flux expansion factor [$f$] and photospheric magnetic-field strength [$B_{mathrm{S}}$]) at all latitudes using data of interplanetary sci
During eruptive flares, vector magnetograms show increasing horizontal magnetic field and downward Lorentz force in the Suns photosphere around the polarity-inversion line. Such behavior has often been associated with the implosion conjecture and int