ﻻ يوجد ملخص باللغة العربية
Context: Knowledge about the coronal magnetic field is important to the understanding the structure of the solar corona. We compute the field in the higher layers of the solar atmosphere from the measured photospheric field under the assumption that the corona is force-free. Aims: Here we develop a method for nonlinear force-free coronal magnetic field medelling and preprocessing of photospheric vector magnetograms in spherical geometry using the optimization procedure. Methods: We describe a newly developed code for the extrapolation of nonlinear force-free coronal magnetic fields in spherical coordinates over a restricted area of the Sun. The program uses measured vector magnetograms on the solar photosphere as input and solves the force-free equations in the solar corona. We develop a preprocessing procedure in spherical geometry to drive the observed non-force-free data towards suitable boundary conditions for a force-free extrapolation. Results: We test the code with the help of a semi-analytic solution and assess the quality of our reconstruction qualitatively by magnetic field line plots and quantitatively with a number of comparison metrics for different boundary conditions. The reconstructed fields from the lower boundary data with the weighting function are in good agreement with the original reference fields. We added artificial noise to the boundary conditions and tested the code with and without preprocessing. The preprocessing recovered all main structures of the magnetogram and removed small-scale noise. The main test was to extrapolate from the noisy photospheric vector magnetogram with and without preprocessing. The preprocessing was found to significantly improve the agreement between the extrapolated and the exact field.
The solar magnetic field is key to understanding the physical processes in the solar atmosphere. Nonlinear force-free codes have been shown to be useful in extrapolating the coronal field from underlying vector boundary data [see Schrijver et al. 2
The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our co
Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospher
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Amperes law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this
This paper is the third in a series of papers working towards the construction of a realistic, evolving, non-linear force-free coronal field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of