We develop a percolation model motivated by recent experimental studies of gels with active network remodeling by molecular motors. This remodeling was found to lead to a critical state reminiscent of random percolation (RP), but with a cluster distr
ibution inconsistent with RP. Our model not only can account for these experiments, but also exhibits an unusual type of mixed phase transition: We find that the transition is characterized by signatures of criticality, but with a discontinuity in the order parameter.
In this note, we reply to the comment made by E.I.Kats and V.V.Lebedev [arXiv:1407.4298] on our recent work Thermodynamics of quantum crystalline membranes [Phys. Rev. B 89, 224307 (2014)]. Kats and Lebedev question the validity of the calculation pr
esented in our work, in particular on the use of a Debye momentum as a ultra-violet regulator for the theory. We address and counter argue the criticisms made by Kats and Lebedev to our work.
In our paper (Wolfle and Balatsky, Phys. Rev. B 98, 104505 (2018)) we presented a microscopic theory of superconductivity for doped SrTiO$_{3}$ by proposing two pairing mechanisms acting simultaneously with relative strength depending on the closenes
s to the ferroelectric quantum critical point. The first mechanism rests on the dynamically screened Coulomb interaction, and the second assumed a coupling to the soft transverse optical phonon. In their comment Ruhman and Lee point out an error in our estimate of the deformation potential coupling to the soft mode. We agree that this type of coupling cannot explain the gigantic isotope effect observed experimentally, so that a different coupling mechanism needs to be found. As for the first pairing mechanism, Ruhman and Lee maintain the view expressed in their paper (Ruhman and Lee, Phys. Rev. B 94, 224515 (2016)) that the energy range over which the usual longitudinal optical phonon mediated interaction operates is limited by the Fermi energy. We object to this view and in this reply present evidence that the cutoff energy is much larger. In a weak coupling system such as SrTiO$_{3}$ the cutoff is given by the energy beyond which quasiparticles cease to be well defined.
We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for ``Point J of the recently proposed jamming phase diagram. We measure the total number
of moving disks and the transverse length of the moving region, and find a power law divergence as the packing density increases toward a critical jamming density. This provides evidence that the T = 0 jamming transition as a function of packing density is a {it second order} phase transition. Additionally we find evidence for multiscaling, indicating the importance of long tails in the velocity fluctuations.
M. Sheinman
,A. Sharma
,F.C. MacKintosh
.
(2016)
.
"Reply to Comment on Anomalous Discontinuity at the Percolation Critical Point of Active Gels"
.
Michael Sheinman
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا