ﻻ يوجد ملخص باللغة العربية
We consider spin-dependent scatterers with large scattering cross-sections in graphene -a Zeeman-like and an intrinsic spin-orbit coupling impurity- and show that a gated ring around them can be engineered to produce an effcient control of the spin dependent transport, like current spin polarization and spin Hall angle. Our analysis is based on a spin-dependent partial-waves expansion of the electronic wave-functions in the continuum approximation, described by the Dirac equation.
We consider resonant scatterers with large scattering cross-sections in graphene that are produced by a gated disk or a vacancy, and show that a gated ring can be engineered to produce an efficient electron cloak. We also demonstrate that this same s
Silicon quantum dots are considered an excellent platform for spin qubits, partly due to their weak spin-orbit interaction. However, the sharp interfaces in the heterostructures induce a small but significant spin-orbit interaction which degrade the
We analyze the couplings between spins and phonons in graphene. We present a complete analysis of the possible couplings between spins and flexural, out of plane, vibrations. From tight-binding models we obtain analytical and numerical estimates of t
In the last few years, some ideas of electric manipulations in ferromagnetic heterostructures have been proposed for developing next generation spintronic devices. Among them, the magnetization switching driven by spin-orbit torque (SOT) is being int
We generate experimentally a honeycomb refractive index pattern in an atomic vapor cell using electromagnetically-induced transparency. We study experimentally and theoretically the propagation of polarized light beams in such photonic graphene. We d