ﻻ يوجد ملخص باللغة العربية
The representation of clouds and associated processes of rain and snow formation remains one of the major uncertainties in climate and weather prediction models. In a companion paper (Part I), we systematically derived a two moment bulk cloud microphysics model for collision and coalescence in warm rain based on the kinetic coalescence equation (KCE) and used stochastic approximations to close the higher order moment terms, and do so independently of the collision kernel. Conservation of mass and consistency of droplet number concentration of the evolving cloud properties were combined with numerical simulations to reduce the parametrization problem to three key parameters. Here, we constrain these three parameters based on the physics of collision and coalescence resulting in a region of validity. Furthermore, we theoretically validate the new bulk model by deriving a subset of the region of validity that contains stochastic parameters that skillfully reproduces an existing model based on an a priori droplet size distribution by Seifert and Beheng (2001). The stochastic bulk model is empirically validated against this model, and parameter values that faithfully reproduce detailed KCE results are identified. Furthermore, sensitivity tests indicate that the stochastically derived model can be used with a time step as large as 30 seconds without significantly compromising accuracy, which makes it very attractive to use in medium to long range weather prediction models. These results can be explored in the future to select parameters in the region of validity that are conditional on environmental conditions and the age of the cloud.
We propose a mathematical methodology to derive a stochastic parameterization of bulk warm cloud micro-physics properties. Unlike previous bulk parameterizations, the stochastic parameterization does not assume any particular droplet size distributio
We present a mean-field model that describes droplet growth due to condensation and collisions and droplet loss due to fallout. The model allows for an effective numerical simulation. We study how the rain initiation time depends on different paramet
This is a short review of two common approximations in stochastic chemical and biochemical kinetics. It will appear as Chapter 6 in the book Quantitative Biology: Theory, Computational Methods and Examples of Models edited by Brian Munsky, Lev Tsimri
Based on theoretical and experimental consideration of the first (the Twomey effect) and second indirect aerosol effects the quasianalytic description of physical connection between the galactic cosmic rays intensity and the Earths cloud cover is obt
The solution of energy-balance model of the Earth global climate and the EPICA Dome C and Vostok experimental data of the Earth surface palaeotemperature evolution over past 420 and 740 kyr are compared. In the framework of proposed bifurcation model