ﻻ يوجد ملخص باللغة العربية
A variational Monte Carlo method for bosonic lattice models is introduced. The method is based on the Baeriswyl projected wavefunction. The Baeriswyl wavefunction consists of a kinetic energy based projection applied to the wavefunction at infinite interaction, and is related to the shadow wavefunction already used in the study of continuous models of bosons. The wavefunction at infinite interaction, and the projector, are represented in coordinate space, leading to an expression for expectation values which can be evaluated via Monte Carlo sampling. We calculate the phase diagram and other properties of the bosonic Hubbard model. The calculated phase diagram is in excellent agreement with known quantum Monte Carlo results. We also analyze correlation functions.
We calculate the superfluid weight and the polarization amplitude for the one-dimensional bosonic Hubbard model focusing on the strong-coupling regime. Other than analytic calculations we apply two methods: variational Monte Carlo based on the Baeris
The Haldane Insulator is a gapped phase characterized by an exotic non-local order parameter. The parameter regimes at which it might exist, and how it competes with alternate types of order, such as supersolid order, are still incompletely understoo
We study the phase diagram of the one-dimensional bosonic Hubbard model with contact ($U$) and near neighbor ($V$) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The par
The conventional tensor-network states employ real-space product states as reference wave functions. Here, we propose a many-variable variational Monte Carlo (mVMC) method combined with tensor networks by taking advantages of both to study fermionic
We study, using quantum Monte-Carlo simulations, the bosonic Kondo-Hubbard model in a two dimensional square lattice. We explore the phase diagram and analyse the mobility of particles and magnetic properties. At unit filling, the transition from a p