ﻻ يوجد ملخص باللغة العربية
We study, using quantum Monte-Carlo simulations, the bosonic Kondo-Hubbard model in a two dimensional square lattice. We explore the phase diagram and analyse the mobility of particles and magnetic properties. At unit filling, the transition from a paramagnetic Mott insulator to a ferromagnetic superfluid appears continuous, contrary to what was predicted with mean field. For double occupation per site, both the Mott insulating and superfluid phases are ferromagnetic and the transition is still continuous. Multiband tight binding Hamiltonians can be realized in optical lattice experiments, which offer not only the possibility of tuning the different energy scales over wide ranges, but also the option of loading the system with either fermionic or bosonic atoms.
Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study su
We calculate the superfluid weight and the polarization amplitude for the one-dimensional bosonic Hubbard model focusing on the strong-coupling regime. Other than analytic calculations we apply two methods: variational Monte Carlo based on the Baeris
The Haldane Insulator is a gapped phase characterized by an exotic non-local order parameter. The parameter regimes at which it might exist, and how it competes with alternate types of order, such as supersolid order, are still incompletely understoo
We study the phase diagram of the one-dimensional bosonic Hubbard model with contact ($U$) and near neighbor ($V$) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The par
A variational Monte Carlo method for bosonic lattice models is introduced. The method is based on the Baeriswyl projected wavefunction. The Baeriswyl wavefunction consists of a kinetic energy based projection applied to the wavefunction at infinite i