ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling vitreous silica bilayers

309   0   0.0 ( 0 )
 نشر من قبل Michael Thorpe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We computer model a free-standing vitreous silica bilayer which has recently been synthesized and characterized experimentally in landmark work. Here we model the bilayer using a computer assembly procedure that starts from a single layer of amorphous graphene, generated using a bond switching algorithm from an initially crystalline graphene structure. Next each bond is decorated with an oxygen atom and the carbon atoms are relabeled as silicon. This monolayer can be now thought of as a two dimensional network of corner sharing triangles. Next each triangle is made into a tetrahedron, by raising the silicon atom above each triangle and adding an additional singly coordinated oxygen atom at the apex. The final step is to mirror reflect this layer to form a second layer and then attach the two layers together to form the bilayer. We show that this vitreous silica bilayer has the additional macroscopic degrees of freedom to easily form a network of identical corner sharing tetrahedra if there is a symmetry plane through the center of the bilayer going through the layer of oxygen ions that join the upper and lower layers. This has the consequence that the upper rings lie exactly above the lower rings, which are tilted in general. The assumption of a network of perfect corner sharing tetrahedra leads to a range of possible densities that we have previously characterized in three dimensional zeolites as a flexibility window. Finally, using a realistic potential, we have relaxed the bilayer to determine the density, and other structural characteristics such as the Si-Si pair distribution functions and the Si-O-Si bond angle distribution, which are compared to the experimental results obtained by direct imaging.



قيم البحث

اقرأ أيضاً

86 - R. DellAnna 1998
We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.
New temperature dependent inelastic x-ray (IXS) and Raman (RS) scattering data are compared to each other and with existing inelastic neutron scattering data in vitreous silica (v-SiO_2), in the 300 - 1775 K region. The IXS data show collective propa gating excitations up to Q=3.5 nm^-1. The temperature behaviour of the excitations at Q=1.6 nm^-1 matches that of the boson peak found in INS and RS. This supports the acoustic origin of the excess of vibrational states giving rise to the boson peak in this glass.
The THz spectrum of density fluctuations, $S(Q, omega)$, of vitreous GeO$_2$ at ambient temperature was measured by inelastic x-ray scattering from ambient pressure up to pressures well beyond that of the known $alpha$-quartz to rutile polyamorphic ( PA) transition. We observe significant differences in the spectral shape measured below and above the PA transition, in particular, in the 30-80 meV range. Guided by first-principle lattice dynamics calculations, we interpret the changes in the phonon dispersion as the evolution from a quartz-like to a rutile-like coordination. Notably, such a crossover is accompanied by a cusp-like behavior in the pressure dependence of the elastic response of the system. Overall, the presented results highlight the complex fingerprint of PA phenomena on the high-frequency phonon dispersion.
76 - G.Simon , B. Hehlen , E. Courtens 2005
Hyper-Raman scattering spectra of vitreous B$_2$O$_3$ are reported and compared to Raman scattering results. The main features are indexed in terms of vibrations of structural units. Particular attention is given to the low frequency boson peak which is shown to relate to out-of-plane librations of B$_3$O$_3$ boroxol rings and BO$_3$ triangles. Its hyper-Raman strength is comparable to that of cooperative polar modes. It points to a sizeable coherent enhancement of the hyper-Raman signal compared to the Raman one. This is explained by the symmetry of the structural units.
172 - Juergen Horbach 2008
The structural and dynamic properties of silica melts under high pressure are studied using molecular dynamics (MD) computer simulation. The interactions between the ions are modeled by a pairwise-additive potential, the so-called CHIK potential, tha t has been recently proposed by Carre et al. The experimental equation of state is well-reproduced by the CHIK model. With increasing pressure (density), the structure changes from a tetrahedral network to a network containing a high number of five- and six-fold Si-O coordination. In the partial static structure factors, this change of the structure with increasing density is reflected by a shift of the first sharp diffraction peak towards higher wavenumbers q, eventually merging with the main peak at densities around 4.2 g/cm^3. The self-diffusion constants as a function of pressure show the experimentally-known maximum, occurring around a pressure of about 20 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا