ﻻ يوجد ملخص باللغة العربية
We investigate the global variation of moduli of linear sections of a general hypersurface. We prove a generic Torelli result for a large proportion of cases, and we obtain a complete picture of the global variation of moduli of line slices of a general hypersurface.
In this paper we extend the well known theorem of Angelo Lopez concerning the Picard group of the general space projective surface containing a given smooth projective curve, to the intermediate Neron-Severi group of a general hypersurface in any smooth projective variety.
We study the variation of linear sections of hypersurfaces in $mathbb{P}^n$. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperpl
We study closures of GL_2(R)-orbits on the total space of the Hodge bundle over the moduli space of curves under the assumption that they are algebraic manifolds. We show that, in the generic stratum, such manifolds are the whole stratum, the hyper
We study the expected behavior of the Betti numbers of arrangements of the zeros of random (distributed according to the Kostlan distribution) polynomials in $mathbb{R}mathrm{P}^n$. Using a random spectral sequence, we prove an asymptotically exact e
A congruence is a surface in the Grassmannian ${rm Gr}(2, 4)$. In this paper, we consider the normalization of congruence of bitangents to a hypersurface in $mathbb P^3$. We call it the Fano congruence of bitangents. We give a criterion for smoothnes