ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear manifolds in the moduli space of one-forms

90   0   0.0 ( 0 )
 نشر من قبل Martin Moeller
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Martin Moeller




اسأل ChatGPT حول البحث

We study closures of GL_2(R)-orbits on the total space of the Hodge bundle over the moduli space of curves under the assumption that they are algebraic manifolds. We show that, in the generic stratum, such manifolds are the whole stratum, the hyperelliptic locus or parameterize curves whose Jacobian has additional endomorphisms. This follows from a cohomological description of the tangent bundle to strata. For non-generic strata similar results can be shown by a case-by-case inspection. We also propose to study a notion of linear manifold that comprises Teichmueller curves, Hilbert modular surfaces and the ball quotients of Deligne and Mostow. Moreover, we give an explanation for the difference between Hilbert modular surfaces and Hilbert modular threefolds with respect to this notion of linearity.



قيم البحث

اقرأ أيضاً

In this paper, we discuss the cycle theory on moduli spaces $cF_h$ of $h$-polarized hyperkahler manifolds. Firstly, we construct the tautological ring on $cF_h$ following the work of Marian, Oprea and Pandharipande on the tautological conjecture on m oduli spaces of K3 surfaces. We study the tautological classes in cohomology groups and prove that most of them are linear combinations of Noether-Lefschetz cycle classes. In particular, we prove the cohomological version of the tautological conjecture on moduli space of K3$^{[n]}$-type hyperkahler manifolds with $nleq 2$. Secondly, we prove the cohomological generalized Franchetta conjecture on universal family of these hyperkahler manifolds.
Building on an idea of Borcherds, Katzarkov, Pantev, and Shepherd-Barron (who treated the case $e=14$), we prove that the moduli space of polarized K3 surfaces of degree $2e$ contains complete curves for all $egeq 62$ and for some sporadic lower valu es of $e$ (starting at $14$). We also construct complete curves in the moduli spaces of polarized hyper-Kahler manifolds of $mathrm{K3}^{[n]}$-type or $mathrm{Kum}_n$-type for all $nge 1$ and polarizations of various degrees and divisibilities.
102 - Wensheng Cao 2017
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n; F)$ equipped with the quotient topology. It is an important problem in hyperbolic geometry to parameterize $mathcal{M}(n,m;F bp^n)$ and study the geometric and topological structures on the associated parameter space. In this paper, by mainly using the rotation-normalized and block-normalized algorithms, we construct the parameter spaces of both $mathcal{M}(n,m; bhq)$ and $mathcal{M}(n,m;bp(V_+))$, respectively.
159 - V. Ferrer , I. Vainsencher 2020
The space of holomorphic foliations of codimension one and degree $dgeq 2$ in $mathbb{P}^n$ ($ngeq 3$) has an irreducible component whose general element can be written as a pullback $F^*mathcal{F}$, where $mathcal{F}$ is a general foliation of degre e $d$ in $mathbb{P}^2$ and $F:mathbb{P}^ndashrightarrow mathbb{P}^2$ is a general rational linear map. We give a polynomial formula for the degrees of such components.
We construct a compactification of the moduli spaces of abelian differentials on Riemann surfaces with prescribed zeroes and poles. This compactification, called the moduli space of multi-scale differentials, is a complex orbifold with normal crossin g boundary. Locally, our compactification can be described as the normalization of an explicit blowup of the incidence variety compactification, which was defined in [BCGGM18] as the closure of the stratum of abelian differentials in the closure of the Hodge bundle. We also define families of projectivized multi-scale differentials, which gives a proper Deligne-Mumford stack, and our compactification is the orbifold corresponding to it. Moreover, we perform a real oriented blowup of the unprojectivized moduli space of multi-scale differentials such that the $mathrm{SL}_2(mathbb R)$-action in the interior of the moduli space extends continuously to the boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا