ﻻ يوجد ملخص باللغة العربية
We study a trapped two-dimensional spin-imbalanced Fermi gas over a range of temperatures. In the moderate temperature regime, associated with current experiments, we find reasonable semi-quantitative agreement with the measured density profiles as functions of varying spin imbalance and interaction strength. Our calculations show that, in contrast to the three-dimensional case, the phase separation which appears as a spin balanced core, can be associated with non-condensed fermion pairs. We present predictions at lower temperatures where a quasi-condensate will first appear, based on the pair momentum distribution and following the protocols of Jochim and collaborators. While these profiles also indicate phase separation, they exhibit distinctive features which may aid in identifying the condensation regime.
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations.
Motivated by a recent experiment [Revelle et al. Phys. Rev. Lett. 117, 235301 (2016)] that characterized the one- to three-dimensional crossover in a spin-imbalanced ultracold gas of $^6$Li atoms trapped in a two-dimensional array of tunnel-coupled t
We investigate the phase structure of spin-imbalanced unitary Fermi gases beyond mean-field theory by means of the Functional Renormalization Group. In this approach, quantum and thermal fluctuations are resolved in a systematic manner. The discretiz
We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two diffe
We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the mean-field approximation, we employ renormalization group techni