ترغب بنشر مسار تعليمي؟ اضغط هنا

Imbalanced Fermi Gases at Unitarity

122   0   0.0 ( 0 )
 نشر من قبل Koos Gubbels
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two different atomic species both occupying only a single hyperfine state. In both cases, the number of atoms for each component is allowed to be different, which leads to a spin imbalance, or spin polarization. Two different atomic species also lead to a mass imbalance. Imbalanced Fermi gases are relevant to condensed-matter physics, nuclear physics and astroparticle physics. They have been studied intensively in recent years, following their experimental realization in ultracold atomic Fermi gases. The experimental control in such a system allows for a systematic study of the equation of state and the phase diagram as a function of temperature, spin polarization and interaction strength. In this review, we discuss the progress in understanding strongly-interacting imbalanced Fermi gases, where a main goal is to describe the results of the highly controlled experiments. We start by discussing Feshbach resonances, after which we treat the imbalanced Fermi gas in mean-field theory to give an introduction to the relevant physics. We encounter several unusual superfluid phases, including phase separation, gapless Sarma superfluidity, and supersolidity. To obtain a more quantitative description of the experiments, we review also more sophisticated techniques, such as diagrammatic methods and the renormalization-group theory. We end the review by discussing two theoretical approaches to treat the inhomogeneous imbalanced Fermi gas, namely the Landau-Ginzburg theory and the Bogoliubov-de Gennes approach.

قيم البحث

اقرأ أيضاً

We investigate the phase structure of spin-imbalanced unitary Fermi gases beyond mean-field theory by means of the Functional Renormalization Group. In this approach, quantum and thermal fluctuations are resolved in a systematic manner. The discretiz ation of the effective potential on a grid allows us to accurately account for both first- and second-order phase transitions that are present on the mean-field level. We compute the full phase diagram in the plane of temperature and spin-imbalance and discuss the existence of other conjectured phases such as the Sarma phase and a precondensation region. In addition, we explain on a qualitative level how we expect that in-situ density images are affected by our findings and which experimental signatures may potentially be used to probe the phase structure.
171 - S. N. Klimin 2011
The spectra of low-lying pair excitations for an imbalanced two-component superfluid Fermi gas are analytically derived within the path-integral formalism taking into account Gaussian fluctuations about the saddle point. The spectra are obtained for nonzero temperatures, both with and without imbalance, and for arbitrary interaction strength. On the basis of the pair excitation spectrum, we have calculated the thermodynamic parameters of state of cold fermions and the first and second sound velocities. The parameters of pair excitations show a remarkable agreement with the Monte Carlo data and with experiment.
We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the mean-field approximation, we employ renormalization group techni ques. We thus obtain estimates for critical values of the temperature, mass and spin imbalance, above which the system is in the normal phase. In the unpolarized, equal-mass limit, our result for the critical temperature is in accordance with state-of-the-art Monte Carlo calculations. In addition, we estimate the location of regions in the phase diagram where inhomogeneous phases are likely to exist. We show that an intriguing relation exists between the general structure of the many-body phase diagram and the binding energies of the underlying two-body bound-state problem, which further supports our findings. Our results suggest that inhomogeneous condensates form for mass ratios of the spin-down and spin-up fermions greater than three. The extent of the inhomogeneous phase in parameter space increases with increasing mass imbalance.
We study spin- and mass-imbalanced mixtures of spin-$tfrac{1}{2}$ fermions interacting via an attractive contact potential in one spatial dimension. Specifically, we address the influence of unequal particle masses on the pair formation by means of t he complex Langevin method. By computing the pair-correlation function and the associated pair-momentum distribution we find that inhomogeneous pairing is present for all studied spin polarizations and mass imbalances. To further characterize the pairing behavior, we analyze the density-density correlations in momentum space, the so-called shot noise, which is experimentally accessible through time-of-flight imaging. At finite spin polarization, the latter is known to show distinct maxima at momentum configurations associated with the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) instability. Besides those maxima, we find that additional features emerge in the noise correlations when mass imbalance is increased, revealing the stability of FFLO-type correlations against mass imbalance and furnishing an experimentally accessible signature to probe this type of pairing.
We study a trapped two-dimensional spin-imbalanced Fermi gas over a range of temperatures. In the moderate temperature regime, associated with current experiments, we find reasonable semi-quantitative agreement with the measured density profiles as f unctions of varying spin imbalance and interaction strength. Our calculations show that, in contrast to the three-dimensional case, the phase separation which appears as a spin balanced core, can be associated with non-condensed fermion pairs. We present predictions at lower temperatures where a quasi-condensate will first appear, based on the pair momentum distribution and following the protocols of Jochim and collaborators. While these profiles also indicate phase separation, they exhibit distinctive features which may aid in identifying the condensation regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا