ﻻ يوجد ملخص باللغة العربية
The paper concerns the solvability by quadratures of linear differential systems, which is one of the questions of differential Galois theory. We consider systems with regular singular points as well as those with (non-resonant) irregular ones and propose some criteria of solvability for systems whose (formal) exponents are sufficiently small.
We study the problem of solvability of linear differential systems with small coefficients in the Liouvillian sense (or, by generalized quadratures). For a general system, this problem is equivalent to that of solvability of the Lie algebra of the di
We give a necessary and sufficient condition for a system of linear inhomogeneous fractional differential equations to have at least one bounded solution. We also obtain an explicit description for the set of all bounded (or decay) solutions for these systems.
In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation syst
Let $[A]: Y=AY$ with $Ain mathrm{M}_n (k)$ be a differential linear system. We say that a matrix $Rin {cal M}_{n}(bar{k})$ is a {em reduced form} of $[A]$ if $Rin mathfrak{g}(bar{k})$ and there exists $Pin GL_n (bar{k})$ such that $R=P^{-1}(AP-P)in m
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invar