ﻻ يوجد ملخص باللغة العربية
Invariant Set Theory (IST) is a realistic, locally causal theory of fundamental physics which assumes a much stronger synergy between cosmology and quantum physics than exists in contemporary theory. In IST the (quasi-cyclic) universe $U$ is treated as a deterministic dynamical system evolving precisely on a measure-zero fractal invariant subset $I_U$ of its state space. In this approach, the geometry of $I_U$, and not a set of differential evolution equations in space-time $mathcal M_U$, provides the most primitive description of the laws of physics. As such, IST is non-classical. The geometry of $I_U$ is based on Cantor sets of space-time trajectories in state space, homeomorphic to the algebraic set of $p$-adic integers, for large but finite $p$. In IST, the non-commutativity of position and momentum observables arises from number theory - in particular the non-commensurateness of $phi$ and $cos phi$. The complex Hilbert Space and the relativistic Dirac Equation respectively are shown to describe $I_U$, and evolution on $I_U$, in the singular limit of IST at $p=infty$; particle properties such as de Broglie relationships arise from the helical geometry of trajectories on $I_U$ in the neighbourhood of $mathcal M_U$. With the p-adic metric as a fundamental measure of distance on $I_U$, certain key perturbations which seem conspiratorially small relative to the more traditional Euclidean metric, take points away from $I_U$ and are therefore unphysically large. This allows (the $psi$-epistemic) IST to evade the Bell and Pusey et al theorems without fine tuning or other objections. In IST, the problem of quantum gravity becomes one of combining the pseudo-Riemannian metric of $mathcal M_U$ with the p-adic metric of $I_U$. A generalisation of the field equations of general relativity which can achieve this is proposed.
We identify points of difference between Invariant Set Theory and standard quantum theory, and evaluate if these would lead to noticeable differences in predictions between the two theories. From this evaluation, we design a number of experiments, wh
Invariant Set (IS) theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe $U$ can be considered a deterministic dynamical system evolving precisely on a (suitably constructed) fractal dy
In a recent paper (arXiv:2107.04761), Sen critiques a superdeterministic model of quantum physics, Invariant Set Theory, proposed by one of the authors. He concludes that superdeterminism is `unlikely to solve the puzzle posed by the Bell correlation
In a diffeomorphism invariant theory, symmetry breaking may be a mask for coordinate choice.
We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, u