ترغب بنشر مسار تعليمي؟ اضغط هنا

Lorentz Violation in a Diffeomorphism-Invariant Theory

206   0   0.0 ( 0 )
 نشر من قبل Charles Suggs
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Jackiw




اسأل ChatGPT حول البحث

In a diffeomorphism invariant theory, symmetry breaking may be a mask for coordinate choice.



قيم البحث

اقرأ أيضاً

67 - Viqar Husain 1999
We describe a class of diffeomorphism invariant SU(N) gauge theories in N^2 dimensions, together with some matter couplings. These theories have (N^2-3)(N^2-1) local degrees of freedom, and have the unusual feature that the constraint associated with time reparametrizations is identically satisfied. A related class of SU(N) theories in N^2-1 dimensions has the constraint algebra of general relativity, but has more degrees of freedom. Non-perturbative quantization of the first type of theory via SU(N) spin networks is briefly outlined.
In this paper, we evaluate the Casimir energy and pressure for a massive fermionic field confined in the region between two parallel plates. In order to implement this confinement we impose the standard MIT bag boundary on the plates for the fermioni c field. In this paper we consider a quantum field theory model with a CPT even, aether-like Lorentz symmetry violation. It turns out that the fermionic Casimir energy and pressure depend on the direction of the constant vector that implements the Lorentz symmetry breaking.
We consider families of geometries of D--dimensional space, described by a finite number of parameters. Starting from the De Witt metric we extract a unique integration measure which turns out to be a geometric invariant, i.e. independent of the gaug e fixed metric used for describing the geometries. The measure is also invariant in form under an arbitrary change of parameters describing the geometries. We prove the existence of geometries for which there are no related gauge fixing surfaces orthogonal to the gauge fibers. The additional functional integration on the conformal factor makes the measure independent of the free parameter intervening in the De Witt metric. The determinants appearing in the measure are mathematically well defined even though technically difficult to compute.
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in cluding the construction of traversable wormholes, the existence of a family of $SL(2,mathbb{R})$ algebras acting on the matter fields, and the calculation of the scrambling time, can be recast as simple consequences of this algebra. We also use it to clarify the question of when the creation of an excitation deep in the bulk increases or decreases the boundary energy, which is of crucial importance for the typical state
250 - Robert Bluhm , Shu-Hong Fung , 2008
Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations abo ve the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا