ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise determination of the low-energy hadronic contribution to the muon $g-2$ from analyticity and unitarity: An improved analysis

114   0   0.0 ( 0 )
 نشر من قبل Balasubramanian Ananthanarayan
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-pion low-energy contribution to the anomalous magnetic moment of the muon, $a_muequiv(g-2)_mu/2$, expres sed as an integral over the modulus squared of the pion electromagnetic form fac tor, brings a relatively large contribution to the theoretical error, since the low accuracy of experimental measurements in this region is amplified by the drastic increase of the integration kernel. We derive stringent constraints on the two-pion contribution by exploiting analyticity and unitarity of the pion electromagnetic form factor. To avoid the poor knowledge of the modulus of this function, we use instead its phase, known with high precision in the elastic region from Roy equations for pion-pion scattering via the Fermi-Watson theorem. Above the inelastic threshold we adopt a conservative integral condition on the modulus, determined from data and perturbative QCD. Additional high precision data on the modulus in the range $0.65-0.71$ GeV, obtained from $e^+e^-$ annihilation and $tau$-decay experiments, are used to improve the predictions on the modulus at lower energies by means of a parametrization-free analytic extrapolation. The results are optimal for a given input and do not depend on the unknown phase of the form factor above the inelastic threshold. The present work improves a previous analysis based on the same technique, including more experimental data and employing better statistical tools for their treatment. We obtain for the contribution to $a_mu$ from below 0.63 GeV the value $(133.258 pm 0.723)times 10^{-10}$, which amounts to a reduction of the theoretical error by about $6 times 10^{-11}$.



قيم البحث

اقرأ أيضاً

The two-pion contribution from low energies to the muon magnetic moment anomaly, although small, has a large relative uncertainty since in this region the experimental data on the cross sections are neither sufficient nor precise enough. It is theref ore of interest to see whether the precision can be improved by means of additional theoretical information on the pion electromagnetic form factor, which controls the leading order contribution. In the present paper we address this problem by exploiting analyticity and unitarity of the form factor in a parametrization-free approach that uses the phase in the elastic region, known with high precision from the Fermi-Watson theorem and Roy equations for $pipi$ elastic scattering as input. The formalism also includes experimental measurements on the modulus in the region 0.65-0.70 GeV, taken from the most recent $e^+e^-to pi^+pi^-$ experiments, and recent measurements of the form factor on the spacelike axis. By combining the results obtained with inputs from CMD2, SND, BABAR and KLOE, we make the predictions $a_mu^{pipi, LO},[2 m_pi,, 0.30 gev]=(0.553 pm 0.004) times 10^{-10}$ and $a_mu^{pipi, LO},[0.30 gev,, 0.63 gev]=(133. 083 pm 0.837)times 10^{-10}$. These are consistent with the other recent determinations, and have slightly smaller errors.
The leading order hadronic contribution to the muon magnetic moment anomaly, $a^{HAD}_mu$, is determined entirely in the framework of QCD. The result in the light-quark sector, in units of $10^{-10}$, is $a^{HAD}_mu|_{uds} =686 pm 26$, and in the hea vy-quark sector $a^{HAD}_mu|_{c} =14.4 pm 0.1$, and $a^{HAD}_mu|_{b} =0.29 pm 0.01$, resulting in $a^{HAD}_mu = 701 pm 26$. The main uncertainty is due to the current lattice QCD value of the first and second derivative of the electromagnetic current correlator at the origin. Expected improvement in the precision of these derivatives may render this approach the most accurate and trustworthy determination of the leading order $a^{HAD}_mu$.
161 - Michel Davier 2007
The evaluation of the hadronic contribution to the muon magnetic anomaly $a_mu$ is revisited, taking advantage of new experimental data on $e^+e^-$ annihilation into hadrons: SND and CMD-2 for the $pi^+pi^-$ channel, and babar for multihadron final s tates. Discrepancies are observed between KLOE and CMD-2/SND data, preventing one from averaging all the $e^+e^-$ results. The long-standing disagreement between spectral functions obtained from $tau$ decays and $e^+e^-$ annihilation is still present, and not accounted by isospin-breaking corrections, for which new estimates have been presented. The updated Standard Model value for $a_mu$ based on $e^+e^-$ annihilation data is now reaching a precision better than experiment, and it disagrees with the direct measurement from BNL at the 3.3$sigma$ level, while the $tau$-based estimate is in much better agreement. The $tau$/$e^+e^-$ discrepancy, best revealed when comparing the measured branching fraction for $tau^- to pi^- pi^0 u_tau$ to its prediction from the isospin-breaking-corrected $e^+e^-$ spectral function, remains a serious problem to be understood.
We report on our computation of the leading hadronic contribution to the anomalous magnetic moment of the muon using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. The strange quark is introduced in the quenched approxima tion. Partially twisted boundary conditions are applied to improve the momentum resolution in the relevant integral. Our results, obtained at three different values of the lattice spacing, allow for a preliminary study of discretization effects. We explore a wide range of lattice volumes, namely 2 fm < L < 3 fm, with pion masses from 600 to 280 MeV and discuss different chiral extrapolations to the physical point. We observe a non-trivial dependence of a_mu(HLO) on m_pi especially for small pion masses. The final result, a_mu(HLO)=618(64)*10^(-10), is obtained by considering only the quark connected contribution to the vacuum polarization. We present a detailed analysis of systematic errors and discuss how they can be reduced in future simulations.
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol arization function. To this end we employ several complementary approaches, including Pade fits, time moments and the time-momentum representation. We correct our results for finite-volume effects by combining the Gounaris-Sakurai parameterization of the timelike pion form factor with the Luscher formalism. On a subset of our ensembles we have derived an upper bound on the magnitude of quark-disconnected diagrams and found that they decrease the estimate for $a_mu^{mathrm hvp}$ by at most 2%. Our final result is $a_mu^{mathrm hvp}=(654pm32,{}^{+21}_{-23})cdot 10^{-10}$, where the first error is statistical, and the second denotes the combined systematic uncertainty. Based on our findings we discuss the prospects for determining $a_mu^{mathrm hvp}$ with sub-percent precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا