ﻻ يوجد ملخص باللغة العربية
The two-pion contribution from low energies to the muon magnetic moment anomaly, although small, has a large relative uncertainty since in this region the experimental data on the cross sections are neither sufficient nor precise enough. It is therefore of interest to see whether the precision can be improved by means of additional theoretical information on the pion electromagnetic form factor, which controls the leading order contribution. In the present paper we address this problem by exploiting analyticity and unitarity of the form factor in a parametrization-free approach that uses the phase in the elastic region, known with high precision from the Fermi-Watson theorem and Roy equations for $pipi$ elastic scattering as input. The formalism also includes experimental measurements on the modulus in the region 0.65-0.70 GeV, taken from the most recent $e^+e^-to pi^+pi^-$ experiments, and recent measurements of the form factor on the spacelike axis. By combining the results obtained with inputs from CMD2, SND, BABAR and KLOE, we make the predictions $a_mu^{pipi, LO},[2 m_pi,, 0.30 gev]=(0.553 pm 0.004) times 10^{-10}$ and $a_mu^{pipi, LO},[0.30 gev,, 0.63 gev]=(133. 083 pm 0.837)times 10^{-10}$. These are consistent with the other recent determinations, and have slightly smaller errors.
The two-pion low-energy contribution to the anomalous magnetic moment of the muon, $a_muequiv(g-2)_mu/2$, expres sed as an integral over the modulus squared of the pion electromagnetic form fac tor, brings a relatively large contribution to the theor
The evaluation of the hadronic contribution to the muon magnetic anomaly $a_mu$ is revisited, taking advantage of new experimental data on $e^+e^-$ annihilation into hadrons: SND and CMD-2 for the $pi^+pi^-$ channel, and babar for multihadron final s
We investigate the impact of extra leptons on observed tensions in the muon $g-2$ and the first-row CKM unitarity. By introducing a new SU(2)$_L$ doublet lepton and a SU(2)$_L$ triplet lepton, we find that both of the tensions can be explained simult
The leading order hadronic contribution to the muon magnetic moment anomaly, $a^{HAD}_mu$, is determined entirely in the framework of QCD. The result in the light-quark sector, in units of $10^{-10}$, is $a^{HAD}_mu|_{uds} =686 pm 26$, and in the hea
We investigate the Kalb-Ramond antisymmetric tensor field as solution to the muon $g-2$ problem. In particular we calculate the lowest-order Kalb-Ramond contribution to the muon anomalous magnetic moment and find that we can fit the new experimental