ﻻ يوجد ملخص باللغة العربية
Monolayer WSe2 is a two dimensional (2D) semiconductor with a direct bandgap, and it has been recently explored as a promising material for electronics and optoelectronics. Low field effect mobility is the main constraint preventing WSe2 from becoming one of the competing channel materials for field-effect transistors (FETs). Recent results have demonstrated that chemical treatments can modify the electrical properties of transition metal dichalcogenides (TMDCs) including MoS2 and WSe2. Here, we report that controlled heating in air significantly improves device performance of WSe2 FETs in terms of on-state currents and field-effect mobilities. Specifically, after heating at optimized conditions, chemical vapor deposition grown monolayer WSe2 FETs showed an average FET mobility of 31 cm2/Vs and on/off current ratios up to 5*108. For few-layer WSe2 FETs, after the same treatment applied, we achieved a high mobility up to 92 cm2/Vs. These values are significantly higher than FETs fabricated using as-grown WSe2 flakes without heating treatment, demonstrating the effectiveness of air heating on the performance improvements of WSe2 FETs. The underlying chemical processes involved during air heating and the formation of in-plane heterojunctions of WSe2 and WO3-x, which is believed to be the reason for the improved FET performance, were studied by spectroscopy and transmission electron microscopy. We further demonstrated that by combining air heating method developed in this work with supporting 2D materials on BN substrate, we achieved a noteworthy field effect mobility of 83 cm2/Vs for monolayer WSe2 FETs. This work is a step towards controlled modification of the properties of WSe2 and potentially other TMDCs, and may greatly improve device performance for future applications of 2D materials in electronics and optoelectronics.
We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm,
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are good candidates for high-performance flexible electronics. However, most demonstrations of such flexible field-effect transistors (FETs) to date have been on the micron s
Two-dimensional atomic crystals are extensively studied in recent years due to their exciting physics and device applications. However, a molecular counterpart, with scalable processability and competitive device performance, is still challenging. He
In this letter, a new approach to chemically dope black phosphorus (BP) is presented, which significantly enhances the device performance of BP field-effect transistors for an initial period of 18 h, before degrading to previously reported levels. By
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including