ﻻ يوجد ملخص باللغة العربية
We present a multi-wavelength study of four high redshift blazars, S5 0014+81 ($z=3.37$), CGRaBS J0225+1846 ($z=2.69$), BZQ J1430+4205 ($z=4.72$), and 3FGL J1656.2$-$3303 ($z=2.40$), using the quasi-simultaneous data from {it Swift}, {it NuSTAR}, and {it Fermi}-Large Area Telescope (LAT) and also the archival {it XMM-Newton} observations. Other than 3FGL J1656.2$-$3303, none of the sources were known as $gamma$-ray emitters and our analysis of $sim$7.5 years of LAT data reveals the first time detection of the statistically significant $gamma$-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of {it NuSTAR} observations and reproduce them using a one zone leptonic emission model. The optical$-$UV emission in all the objects can be explained by the radiation from the accretion disk, whereas, X-ray to $gamma$-ray window of the SEDs are found to be dominated by the inverse Compton scattering off the broad line region photons. All of them host billion solar mass black holes. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy high disk luminosity-jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than due to external effects predicted in the earlier studies, such as host galaxy and/or warm absorption.
With bolometric luminosities exceeding $10^{48}$ erg s$^{-1}$, powerful jets and supermassive black holes at their center, MeV blazars are some of the most extreme sources in the Universe. Recently, the Fermi-Large Area Telescope detected five new $g
With the release of the first year Fermi catalogue, the number of blazars detected above 100 MeV lying at high redshift has been largely increased. There are 28 blazars at z>2 in the clean sample. All of them are Flat Spectrum Radio Quasars (FSRQs).
High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per
High-$z$ blazars (z $geq 2.5$) are the most powerful class of persistent $gamma$-ray sources in the Universe. These objects possess the highest jet powers and luminosities and have black hole masses often in excess of $10^9$ solar masses. In addition
The INTEGRAL mission has played a major role in blazar science, thanks to its sensitive coverage of a spectral region (3-100 keV) that is critical for this type of sources, to its flexibility of scheduling and to the large field of view of its camera