ﻻ يوجد ملخص باللغة العربية
This document describes the R package UBL that allows the use of several methods for handling utility-based learning problems. Classification and regression problems that assume non-uniform costs and/or benefits pose serious challenges to predictive analytic tasks. In the context of meteorology, finance, medicine, ecology, among many other, specific domain information concerning the preference bias of the users must be taken into account to enhance the models predictive performance. To deal with this problem, a large number of techniques was proposed by the research community for both classification and regression tasks. The main goal of UBL package is to facilitate the utility-based predictive analytic task by providing a set of methods to deal with this type of problems in the R environment. It is a versatile tool that provides mechanisms to handle both regression and classification (binary and multiclass) tasks. Moreover, UBL package allows the user to specify his domain preferences, but it also provides some automatic methods that try to infer those preference bias from the domain, considering some common known settings.
In (Franceschi et al., 2018) we proposed a unified mathematical framework, grounded on bilevel programming, that encompasses gradient-based hyperparameter optimization and meta-learning. We formulated an approximate version of the problem where the i
Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brains activity. More generally, it can be useful to distinguish between multivariate signals recorded dur
Process data refer to data recorded in the log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents response processes of solving the items. Process data analysis aims at enhancing educatio
Matrix and tensor operations form the basis of a wide range of fields and applications, and in many cases constitute a substantial part of the overall computational complexity. The ability of general-purpose GPUs to speed up many of these operations
We present OGRe, a modern Mathematica package for tensor calculus, designed to be both powerful and user-friendly. The package can be used in a variety of contexts where tensor calculations are needed, in both mathematics and physics, but it is espec