ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter

175   0   0.0 ( 0 )
 نشر من قبل Yifeng Wei
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper.

قيم البحث

اقرأ أيضاً

DAMPE is a space-based mission designed as a high energy particle detector measuring cosmic-rays and $gamma-$rays which was successfully launched on Dec.17, 2015. The BGO electromagnetic calorimeter is one of the key sub-detectors of DAMPE for energy measurement of electromagnetic showers produced by $e^{pm}/{gamma}$. Due to energy loss in dead material and energy leakage outside the calorimeter, the deposited energy in BGO underestimates the primary energy of incident $e^{pm}/{gamma}$. In this paper, based on detailed MC simulations, a parameterized energy correction method using the lateral and longitudinal information of electromagnetic showers has been studied and verified with data of electron beam test at CERN. The measurements of energy linearity and resolution are significantly improved by applying this correction method for electromagnetic showers.
An onboard calibration circuit has been designed for the front-end electronics (FEE) of DAMPE BGO Calorimeter. It is mainly composed of a 12 bit DAC, an operation amplifier and an analog switch. Test results showed that a dynamic range of 0 ~ 30 pC w ith a precision of 5 fC was achieved, which meets the requirements of the front-end electronics. Furthermore, it is used to test the trigger function of the FEEs. The calibration circuit has been implemented and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite will be launched at the end of 2015 and the calibration circuit will perform onboard calibration in space.
The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH- based FPGA, of which the design-level flip-flops and embedded block RAMs are single event upset (SEU) sensitive in the harsh space environment. Therefore to comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.
The DArk Matter Particle Explorer (DAMPE) is a space-borne high energy cosmic-ray and $gamma$-ray detector which operates smoothly since the launch on December 17, 2015. The bismuth germanium oxide (BGO) calorimeter is one of the key sub-detectors of DAMPE used for energy measurement and electron proton identification. For events with total energy deposit higher than decades of TeV, the readouts of PMTs coupled on the BGO crystals would become saturated, which results in an underestimation of the energy measurement. Based on detailed simulations, we develop a correction method for the saturation effect according to the shower development topologies and energies measured by neighbouring BGO crystals. The verification with simulated and on-orbit events shows that this method can well reconstruct the energy deposit in the saturated BGO crystal.
159 - H.T. Dai , Y.L. Zhang , J.J. Zang 2020
This paper is about a study on the response of the BGO calorimeter of DAMPE experiment. Four elements in Cosmic Ray nuclei are used as sources for this analysis. A feature resulting from the geomagnetic cutoff exhibits in the energy spectrum, both in simulated and reconstructed data, and is compared between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا