ترغب بنشر مسار تعليمي؟ اضغط هنا

Globular clusters indicate ultra diffuse galaxies are dwarfs

88   0   0.0 ( 0 )
 نشر من قبل Mike Beasley
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of archival {it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $27pm5$ and a $V$-band specific frequency, $S_N=28pm5$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $sim0.9times10^{10}$~msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}sim 1000$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magellanic Cloud-like systems. We find that the mean color of GC population, $g_{475}-I_{814}$ = $0.91pm0.05$ mag, coincides with the peak of the color distribution of intracluster GCs and are also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue-peak in the GC populations of massive galaxies may be fed - at least in part - by the disrupted equivalents of systems such as DF17.

قيم البحث

اقرأ أيضاً

Observations of nearby galaxy clusters at low surface brightness have identified galaxies with low luminosities, but sizes as large as L* galaxies, leading them to be dubbed ultra-diffuse galaxies (UDGs). The survival of UDGs in dense environments li ke the Coma cluster suggests that UDGs could reside in much more massive dark halos. We report the detection of a substantial population of globular clusters (GCs) around a Coma UDG, Dragonfly 17 (DF17). We find that DF17 has a high GC specific frequency of S_N=26+/-13. The GC system is extended, with an effective radius of 12+/-2, or 5.6+/-0.9 kpc at Coma distance, 70% larger than the galaxy itself. We also estimate the mean of the GC luminosity function to infer a distance of 97 (+17/-14) Mpc, providing redshift-independent confirmation that one of these UDGs is in the Coma cluster. The presence of a rich GC system in DF17 indicates that, despite its low stellar density, star formation was intense enough to form many massive star clusters. If DF17s ratio of total GC mass to total halo mass is similar to those in other galaxies, then DF17 has an inferred total mass of ~10^11 solar masses, only ~10% the mass of the Milky Way, but extremely dominated by dark matter, with M/L_V~1000. We suggest that UDGs like DF17 may be pure stellar halos, i.e., galaxies that formed their stellar halo components, but then suffered an early cessation in star formation that prevented the formation of any substantial central disk or bulge.
Ultra diffuse galaxies (UDGs) reveal extreme properties. Here we compile the largest study to date of 85 globular cluster (GC) systems around UDGs in the Coma cluster, using new deep ground-based imaging of the known UDGs and existing imaging from th e Hubble Space Telescope of their GC systems. We find that the richness of GC systems in UDGs generally exceeds that found in normal dwarf galaxies of the same stellar mass. These GC-rich UDGs imply halos more massive than expected from the standard stellar mass-halo mass relation. The presence of such overly massive halos presents a significant challenge to the latest simulations of UDGs in cluster environments. In some exceptional cases, the mass in the GC system is a significant fraction of the stellar content of the host galaxy. We find that rich GC systems tend to be hosted in UDGs of lower luminosity, smaller size and fainter surface brightness. Similar trends are seen for normal dwarf galaxies in the Coma cluster. A toy model is presented in which the GC-rich UDGs are assumed to be `failed galaxies within massive halos that have largely old, metal-poor, alpha-element enhanced stellar populations. On the other hand, GC-poor UDGs are more akin to normal, low surface brightness dwarfs that occupy less massive dark matter halos. Additional data on the stellar populations of UDGs with GC systems will help to further refine and test this simplistic model.
Since 2015 there has been a great deal of interest in a supposed new class of galaxy called Ultra Diffuse Galaxies (UDGs). These are large systems with sizes $> 1.5$ kpc and have surface brightness values which are $mu > 25$ mag arcsec$^{-2}$. Becaus e of their low-surface brightness they are proposed to be `failed Milky Way type galaxies given their similar size, but much lower stellar masses. As such, these systems are considered by some as a new type of galaxy, yet we show that they are a subset of a well-established and well studied population of low-surface brightness galaxies found mostly in dense areas of the universe - clusters of galaxies. We argue based on previous literature that the most likely method for forming these galaxies is through cluster processes such as `Galaxy Harassment, where through multiple high speed encounters an infalling galaxy is gradually removed of its mass, until it resembles a dwarf elliptical. Future studies of UDGs should consider the above and their more general connection to previously studied populations.
151 - Xufen Wu , Pavel Kroupa 2017
We study the evolution of star clusters located in the outer regions of a galaxy undergoing a sudden mass loss through gas expulsion in the framework of Milgromian dynamics (MOND) by means of N-body simulations. We find that, to leave a bound star cl uster, the star formation efficiency (SFE) of an embedded cluster dominated by deep MOND gravity can be reduced down to $2.5%$. For a given SFE, the star clusters that survive in MOND can bind a larger fraction of mass compared to the Newtonian dynamics. Moreover, the more diffuse the embedded cluster is, the less substantial the size expansion of the final star cluster is. The density profiles of a surviving star cluster are more cuspy in the centre for more massive embedded clusters, and the central density profiles are flatter for less massive embedded clusters or for lower SFE. This work may help to understand the low concentration and extension of the distant low-density globular clusters (GCs) and ultra-faint and diffuse satellite galaxies around the Milky Way.
The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass - halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxys total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 globular clusters per 10$^9$ $M_odot$ of total mass, the surviving Milky Way (MW) subhalos with masses smaller than $10^{10} M_odot$ could host as many as 5 to 31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90$%$ of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass-halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MWs outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا