ترغب بنشر مسار تعليمي؟ اضغط هنا

Are Some Milky Way Globular Clusters Hosted by Undiscovered Galaxies?

71   0   0.0 ( 0 )
 نشر من قبل Denija Crnojevi\\'c
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass - halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxys total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 globular clusters per 10$^9$ $M_odot$ of total mass, the surviving Milky Way (MW) subhalos with masses smaller than $10^{10} M_odot$ could host as many as 5 to 31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90$%$ of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass-halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MWs outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.



قيم البحث

اقرأ أيضاً

Theoretically long gamma-ray bursts (GRBs) are expected to happen in low-metallicity environments, because in a single massive star scenario, low iron abundance prevents loss of angular momentum through stellar wind, resulting in ultra-relativistic j ets and the burst. In this sense, not just a simple metallicity measurement but also low iron abundance ([Fe/H]<-1.0) is essentially important. Observationally, however, oxygen abundance has been measured more often due to stronger emission. In terms of oxygen abundance, some GRBs have been reported to be hosted by high-metallicity star-forming galaxies, in tension with theoretical predictions. Here we compare iron and oxygen abundances for the first time for GRB host galaxies (GRB 980425 and 080517) based on the emission-line diagnostics. The estimated total iron abundances, including iron in both gas and dust, are well below the solar value. The total iron abundances can be explained by the typical value of theoretical predictions ([Fe/H]<-1.0), despite high oxygen abundance in one of them. According to our iron abundance measurements, the single massive star scenario still survives even if the oxygen abundance of the host is very high, such as the solar value. Relying only on oxygen abundance could mislead us on the origin of the GRBs. The measured oxygen-to-iron ratios, [O/Fe], can be comparable to the highest values among the iron-measured galaxies in the Sloan Digital Sky Survey. Possible theoretical explanations of such high [O/Fe] include the young age of the hosts, top-heavy initial mass function, and fallback mechanism of the iron element in supernova explosions.
Here we examine the Milky Ways GC system to estimate the fraction of accreted versus in situ formed GCs. We first assemble a high quality database of ages and metallicities for 93 Milky Way GCs from literature deep colour-magnitude data. The age-meta llicity relation for the Milky Ways GCs reveals two distinct tracks -- one with near constant old age of ~12.8 Gyr and the other branches to younger ages. We find that the latter young track is dominated by globular clusters associated with the Sagittarius and Canis Major dwarf galaxies. Despite being overly simplistic, its age-metallicity relation can be well represented by a simple closed box model with continuous star formation. The inferred chemical enrichment history is similar to that of the Large Magellanic Cloud, but is more enriched, at a given age, compared to the Small Magellanic Cloud. After excluding Sagittarius and Canis Major GCs, several young track GCs remain. Their horizontal branch morphologies are often red and hence classified as Young Halo objects, however they do not tend to reveal extended horizontal branches (a possible signature of an accreted remnant nucleus). Retrograde orbit GCs (a key signature of accretion) are commonly found in the young track. We also examine GCs that lie close to the Fornax-Leo-Sculptor great circle defined by several satellite galaxies. We find that several GCs are consistent with the young track and we speculate that they may have been accreted along with their host dwarf galaxy, whose nucleus may survive as a GC. Finally, we suggest that 27-47 GCs (about 1/4 of the entire system), from 6-8 dwarf galaxies, were accreted to build the Milky Way GC system we seen today.
We report on the extent of the effects of the Milky Ways gravitational field in shaping the structural parameters and internal dynamics of its globular cluster population. We make use of a homogeneous, up-to-date data set with kinematics, structural properties, current and initial masses of 156 globular clusters. In general, cluster radii increase as the Milky Way potential weakens; with the core and Jacobi radii being those which increase at the slowest and fastest rate respectively. We interpret this result as the innermost regions of globular clusters being less sensitive to changes in the tidal forces with the Galactocentric distance. The Milky Ways gravitational field also seems to have differentially accelerated the internal dynamical evolution of individual clusters, with those toward the bulge appearing dynamically older. Finally we find a sub-population consisting of both compact and extended globular clusters (as defined by their rh/rJ ratio) beyond 8 kpc that appear to have lost a large fraction of their initial mass lost via disruption. Moreover, we identify a third group with rh/rJ > 0.4, which have lost an even larger fraction of their initial mass by disruption. In both cases the high fraction of mass lost is likely due to their large orbital eccentricities and inclination angles, which lead to them experiencing more tidal shocks at perigalacticon and during disc crossings. Comparing the structural and orbital parameters of individual clusters allows for constraints to be placed on whether or not their evolution was relaxation or tidally dominated.
65 - Saikat Das , Nirupam Roy 2020
The motion of the baryonic components of the Milky Way is governed by both luminous and dark matter content of the Galaxy. Thus, the dynamics of the Milky Way globular clusters can be used as tracers to infer the mass model of the Galaxy up to a larg e radius. In this work, we use the directly observable line-of-sight velocities to test if the dynamics of the globular cluster population is consistent with an assumed axisymmetric gravitational potential of the Milky Way. For this, we numerically compute the phase space distribution of the globular cluster population where the orbits are either oriented randomly or co-/counter- rotating with respect to the stellar disk. Then we compare the observed position and line-of-sight velocity distribution of $sim$ 150 globular clusters with that of the models. We found that, for the adopted mass model, the co-rotating scenario is the favored model based on various statistical tests. We do the analysis with and without the GCs associated to the progenitors of early merger events. This analysis can be extended in the near future to include precise and copious data to better constrain the Galactic potential up to a large radius.
148 - Brian Kimmig 2014
We present central velocity dispersions, masses, mass to light ratios ($M/L$s), and rotation strengths for 25 Galactic globular clusters. We derive radial velocities of 1951 stars in 12 globular clusters from single order spectra taken with Hectochel le on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of $M/L$ with cluster mass and metallicity. The overall values of $M/L$ and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing $M/L$ with cluster mass, and lower than expected $M/L$s for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا