ترغب بنشر مسار تعليمي؟ اضغط هنا

N=4 superconformal Ward identities for correlation functions

286   0   0.0 ( 0 )
 نشر من قبل Gregory Korchemsky
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.



قيم البحث

اقرأ أيضاً

We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from low er-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
We compute correlation functions of chiral primary operators in N=2 superconformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on N=4 SYM as well as on superconformal QCD. In the case of N=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small $N$ results in the literature.
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular , we show that: 1) The partition function for arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be computed in perturbation series, which converges uniformly for $|lambda_I|<pi^2$, where $lambda_I$ are the t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions can be explicitly computed to arbitrary orders. There is no universal effective coupling by which one can express them in terms of correlators of the $mathcal{N}=4$ theory. 4) One can define twisted and untwisted sector operators. At the perturbative orbifold point, when all the couplings are the same, the correlators of untwisted sector operators coincide with those of $mathcal{N}=4$ Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of a certain number of planar loops, determined by the conformal dimension of the operator.
115 - Andrea Manenti 2019
We present a systematic method to expand in components four dimensional superconformal multiplets. The results cover all possible $mathcal{N} = 1$ multiplets and some cases of interest for $mathcal{N} = 2$. As an application of the formalism we prove that certain $mathcal{N} = 2$ spinning chiral operators (also known as exotic chiral primaries) do not admit a consistent three-point function with the stress tensor and therefore cannot be present in any local SCFT. This extends a previous proof in the literature which only applies to certain classes of theories. To each superdescendant we associate a superconformally covariant differential operator, which can then be applied to any correlator in superspace. In the case of three-point functions, we introduce a convenient representation of the differential operators that considerably simplifies their action. As a consequence it is possible to efficiently obtain the linear relations between the OPE coefficients of the operators in the same superconformal multiplet and in turn streamline the computation of superconformal blocks. We also introduce a Mathematica package to work with four dimensional superspace.
We describe a new approach to computing the chiral part of correlation functions of stress-tensor supermultiplets in N=4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functio ns are given by a linear combination of chiral N=4 superconformal invariants accompanied by coefficient functions depending on the space-time coordinates only. We present the explicit construction of these invariants and show that the six-point correlation function is fixed in the Born approximation up to four constant coefficients by its symmetries. In addition, the known asymptotic structure of the correlation function in the light-like limit fixes unambiguously these coefficients up to an overall normalization. We demonstrate that the same approach can be applied to obtain a representation for the six-point NMHV amplitude that is free from any auxiliary gauge fixing parameters, does not involve spurious poles and manifests half of the dual superconformal symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا