ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency-based nanoparticle sensing over large field ranges using the ferromagnetic resonances of a magnetic nanodisc

133   0   0.0 ( 0 )
 نشر من قبل Maximilian Albert
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within the disc using direct magnetic eigenmode calculations and study how their frequencies and profiles are changed by the nanoparticles stray magnetic field. We demonstrate that particles can generate shifts in the resonant frequency of the discs fundamental mode which exceed resonance linewidths in recently studied spin torque oscillator devices. Importantly, it is shown that the simulated shifts can be maintained over large field ranges (here up to 1T). This is because the resonant dynamics (the basis of nanoparticle detection here) respond directly to the nanoparticle stray field, i.e. detection does not rely on nanoparticle-induced changes to the magnetic ground state of the disk. A consequence of this is that in the case of small disc-particle separations, sensitivities to the particle are highly mode- and particle-position-dependent, with frequency shifts being maximised when the intense stray field localised directly beneath the particle can act on a large proportion of the discs spins that are undergoing high amplitude precession.

قيم البحث

اقرأ أيضاً

Remote sensing of magnetic nanoparticles has exciting applications for magnetic nanoparticle hyperthermia and molecular detection. We introduce, simulate, and experimentally demonstrate an innovation---a sensing coil that is geometrically decoupled f rom the excitation field---for magnetic nanoparticle spectroscopy that increases the flexibility and capabilities of remote detection. The decoupling enhances the sensitivity absolutely; to small amounts of nanoparticles, and relatively; to small changes in the nanoparticle dynamics. We adapt a previous spectroscopic method that measures the relaxation time of nanoparticles and demonstrate a new measurement of nanoparticle temperature that could potentially be used concurrently during hyperthermia.
Unwanted fluctuations over time, in short, noise, are detrimental to device performance, especially for quantum coherent circuits. Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on interf acing single magnons to superconducting qubits. However, the coupling of several components often introduces additional noise to the system, degrading its coherence. Researching the temporal behavior can help to identify the underlying noise sources, which is a vital step in increasing coherence times and the hybrid device performance. Yet, the frequency noise of the ferromagnetic resonance (FMR) has so far been unexplored. Here, we investigate such FMR frequency fluctuations of a YIG sphere down to mK-temperatures, and find them independent of temperature and drive power. This suggests that the measured frequency noise in YIG is dominated by so far undetermined noise sources, which properties are not consistent with the conventional model of two-level systems, despite their effect on the sample linewidth. Moreover, the functional form of the FMR frequency noise power spectral density (PSD) cannot be described by a simple power law. By employing time-series analysis, we find a closed function for the PSD that fits our observations. Our results underline the necessity of coherence improvements to magnon systems for useful applications in quantum magnonics.
The superposition principle is one of the bizarre predictions of quantum mechanics. Nevertheless, it has been experimentally verified using electrons, photons, atoms, and molecules. In this article, using a $20~$nm levitated ferromagnetic FePt nanopa rticle, an exotic all optical spin polarization technique and the matter-wave interferometry, we show that a mesoscopic spatial Schrodinger cat can be created. Additionally, we argue that the maximum spatial separation between the delocalized wavepackets can be $25~mu m$ and is significantly larger than the object itself.
We present a scanning magnetic force sensor based on an individual magnet-tipped GaAs nanowire (NW) grown by molecular beam epitaxy. Its magnetic tip consists of a final segment of single-crystal MnAs formed by sequential crystallization of the liqui d Ga catalyst droplet. We characterize the mechanical and magnetic properties of such NWs by measuring their flexural mechanical response in an applied magnetic field. Comparison with numerical simulations allows the identification of their equilibrium magnetization configurations, which in some cases include magnetic vortices. To determine a NWs performance as a magnetic scanning probe, we measure its response to the field profile of a lithographically patterned current-carrying wire. The NWs tiny tips and their high force sensitivity make them promising for imaging weak magnetic field patterns on the nanometer-scale, as required for mapping mesoscopic transport and spin textures or in nanometer-scale magnetic resonance.
We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led throu gh magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, i.e. configurations with vortex end domains or -- in the case of a sufficiently short FNT -- with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized mangetization configurations influence the measured stray-field patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا