ﻻ يوجد ملخص باللغة العربية
Remote sensing of magnetic nanoparticles has exciting applications for magnetic nanoparticle hyperthermia and molecular detection. We introduce, simulate, and experimentally demonstrate an innovation---a sensing coil that is geometrically decoupled from the excitation field---for magnetic nanoparticle spectroscopy that increases the flexibility and capabilities of remote detection. The decoupling enhances the sensitivity absolutely; to small amounts of nanoparticles, and relatively; to small changes in the nanoparticle dynamics. We adapt a previous spectroscopic method that measures the relaxation time of nanoparticles and demonstrate a new measurement of nanoparticle temperature that could potentially be used concurrently during hyperthermia.
Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within t
The spectral characteristics of near-field thermal emission from nanoparticle arrays are explained by comparison to the dispersions for propagating modes. Using the coupled dipole model, we analytically calculate the spectral emission from single par
The traditional theory of magnetic moments for chiral phonons is based on the picture of the circular motion of the Born effective charge, typically yielding a small fractional value of the nuclear magneton. Here we investigate the adiabatic evolutio
A wire that conducts an electric current will give rise to circular magnetic field (the {O}rsted magnetic field) that is easily calculated using the Maxwell-Ampere equation. For wires with diameters in the macroscopic scale, this is an established ph
We experimentally study magnetization dynamics in magnetic tunnel junctions driven by femtosecond-laser-induced surface acoustic waves. The acoustic pulses induce a magnetization precession in the free layer of the magnetic tunnel junction through ma