ﻻ يوجد ملخص باللغة العربية
It has been shown recently that spectral flow admits a natural integer-valued extension to essential spectrum. This extension admits four different interpretations; two of them are singular spectral shift function and total resonance index. In this work we study resonance index outside essential spectrum. Among results of this paper are the following. 1. Total resonance index satisfies Robbin-Salamon axioms for spectral flow. 2. Direct proof of equality total resonance index = intersection number. 3. Direct proof of equality total resonance index = total Fredholm index. 4. (a) Criteria for a perturbation~$V$ to be tangent to the~resonance set at a point~$H,$ where the resonance set is the infinite-dimensional variety of self-adjoint perturbations of the initial self-adjoint operator~$H_0$ which have~$lambda$ as an eigenvalue. (b) Criteria for the order of tangency of a perturbation~$V$ to the resonance set. 5. Investigation of the root space of the compact operator $(H_0+sV-lambda)^{-1}V$ corresponding to an eigenvalue $(s-r_lambda)^{-1},$ where $H_0+r_lambda V$ is a point of the resonance set. This analysis gives a finer information about behaviour of discrete spectrum compared to spectral flow. Finally, many results of this paper are non-trivial even in finite dimensions, in which case they can be and were tested in numerical experiments.
This paper is a continuation of my previous work on absolutely continuous and singular spectral shift functions, where it was in particular proved that the singular part of the spectral shift function is an a.e. integer-valued function. It was also s
In this paper it is shown that in case of trace class perturbations the singular part of Pushnitski $mu$-invariant does not depend on the angle variable. This gives an alternative proof of integer-valuedness of the singular part of the spectral shift
In this paper we prove for rank one perturbations that negative two times reciprocal of the imaginary part of resonance point is equal to the rate of change of the scattering phase as a function of the coupling constant, where the coupling constant i
The spectral flow is a classical notion of functional analysis and differential geometry which was given different interpretations as Fredholm index, Witten index, and Maslov index. The classical theory treats spectral flow outside the essential spec
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metric graphs having infinitely many edges and vertices. We introduce a new definition of the isoperimetric constant for quantum graphs and then prove the