ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

60   0   0.0 ( 0 )
 نشر من قبل Antonio Marinelli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the astrophysical muonic neutrinos reconstructed in the Northern hemisphere. A good agreement between the expected astrophysical neutrino flux and the IceCube data is found for the full sky as well as for the Galactic plane region.



قيم البحث

اقرأ أيضاً

The core mission of the IceCube Neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neut rinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux, and constrains its origin. In addition, the spectrum, composition and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications on our understanding of cosmic rays.
120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
133 - P. Padovani 2016
We explore the correlation of $gamma$-ray emitting blazars with IceCube neutrinos by using three very recently completed, and independently built, catalogues and the latest neutrino lists. We introduce a new observable, namely the number of neutrino events with at least one $gamma$-ray counterpart, $N_{ u}$. In all three catalogues we consistently observe a positive fluctuation of $N_{ u}$ with respect to the mean random expectation at a significance level of $0.4 - 1.3$ per cent. This applies only to extreme blazars, namely strong, very high energy $gamma$-ray sources of the high energy peaked type, and implies a model-independent fraction of the current IceCube signal $sim 10 - 20$ per cent. An investigation of the hybrid photon -- neutrino spectral energy distributions of the most likely candidates reveals a set of $approx 5$ such sources, which could be linked to the corresponding IceCube neutrinos. Other types of blazars, when testable, give null correlation results. Although we could not perform a similar correlation study for Galactic sources, we have also identified two (further) strong Galactic $gamma$-ray sources as most probable counterparts of IceCube neutrinos through their hybrid spectral energy distributions. We have reasons to believe that our blazar results are not constrained by the $gamma$-ray samples but by the neutrino statistics, which means that the detection of more astrophysical neutrinos could turn this first hint into a discovery.
Air-Cherenkov telescopes have mapped the Galactic plane at TeV energies. Here we evaluate the prospects for detecting the neutrino emission from sources in the Galactic plane assuming that the highest energy photons originate from the decay of pions, which yields a straightforward prediction for the neutrino flux from the decay of the associated production of charged pions. Four promising sources are identified based on having a large flux and a flat spectrum. We subsequently evaluate the probability of their identification above the atmospheric neutrino background in IceCube data as a function of time. We show that observing them over the twenty-year lifetime of the instrumentation is likely, and that some should be observable at the $3,sigma$ level with six years of data. In the absence of positive results, we derive constraints on the spectral index and cut-off energy of the sources, assuming a hadronic acceleration mechanism.
Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to ~77% of its original level over roughly 1 1/2 solar cycles, Single Even t Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the Degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that during solar cycle 23 (1996 Apr 1 -- 2008 Aug 31) only 6% of the total number of SSR SEUs were caused by SEPs; the remaining 94% were due to galactic cosmic rays. During the maximum period of cycle 23 (2000 Jan 1 -- 2003 Dec 31), the SEP contribution increased to 22%, and during 2001, the year with the highest SEP rate, to 30%. About 40% of the total solar array degradation during the 17 years from Jan 1996 through Feb 2013 can be attributed to proton events, i.e. the effect of a series of short-lived, violent SEP events is comparable to the cycle-integrated damage by cosmic rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا