ﻻ يوجد ملخص باللغة العربية
We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, $E>$ 100 GeV) blazar S4 0954+65 ($z=0.368$) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE $gamma$-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of $1.8 pm 0.1$---compared with the 3FGL value (averaged over four years of observation) of $2.34 pm 0.04$. In contrast, Swift/XRT data showed a softening of the X-ray spectrum, with a photon index of $1.72 pm 0.08$ (compared with $1.38 pm 0.03$ averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous ($<1$ day) broadband spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of $gtrsim 1.0 times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$ ($E>$ 100 MeV) and a hard spectral index of $Gamma_{rm GeV} < 2.0$ detected by Fermi-LAT on daily time scales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.
The very-high-energy (VHE, $gtrsim 100$ GeV) $gamma$-ray MAGIC observations of the blazar S4 0954+65, were triggered by an exceptionally high flux state of emission in the optical. This blazar has a disputed redshift of z=0.368 or z$geqslant$0.45 and
We present optical photopolarimetric observations of the BL Lac object S4 0954+658 obtained with the 70-cm telescope in Crimea, 40-cm telescope in St.Petersburg, and 1.8-m Perkins telescope at Lowell Observatory (Flagstaff, Az). After a faint state w
Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar
We perform a detailed spectral study of a recent flaring activity from the Flat Spectrum Radio Quasar (FSRQ), 3C,454.3, observed simultaneously in optical, UV, X-ray and $gamma$-ray energies during 16 to 28 August, 2015. The source reached its peak $
The BLLac object S4 0954+65 is one of the main targets of the Urumqi monitoring program targeting IntraDay Variable (IDV) sources. Between August 2005 and December 2009, the source was included in 41 observing sessions, carried out at a frequency of